How many bricks does it take to crack a
microcell?

Mathew Rowley
Matasano Security

Abstract

This is a tale of a journey that tested almost every security related skill I have
acquired over the past six years. It is a story of failures, successes, logic flaws and
learning.

This is my adventure of reverse engineering a 3G microcell. It will cover topics
including hardware hacking, kernel reversing, firmware extraction and
manipulation, software reversing, networking, memory forensics, social
engineering, and more. [have gained a wealth of knowledge going through the
process of completely pulling apart this device and want to share my trials and
errors. This project covers such a broad spectrum of topics at differential depths
that anyone reading should obtain some knowledge they previously did not have.

Background

The cell phone reception in my apartment is horrible; somehow my mobile phone
provider was able to discover that and proactively make a response. To my surprise,
I received a coupon in the mail for a free microcell /femtocell. I quickly went to the
store to pick up the device and set it up in my apartment. After a little bit of
configuration on the company’s web page, my phone gladly connected to the
microcell without any user interaction. With all of the mobile research going on and
the GSM hacks that have been presented in the past, my mind went wild with ideas. I
proceeded to see how I could use this device to my advantage.

Hardware

Disassembly

Upon obtaining the microcell, the first step was to disassemble the outer panels in
order to gain access to the physical board. The device had two screws behind the
MAC address tape on the bottom of the device. Upon unscrewing these, the orange
bottom panel can be removed. There are two places where the outside cage is
attached to jumper pins on the actual board. These need to be unhooked, or
removed prior to removing the outer panels. If the jumper pins are not connected in
the proper order and the device is booted up, it will send a signal home, informing
that the device has been tampered with. The first attempt at disassembling caused

the device to becoming inactive due to the pins being pulled. Upon speaking with a
technical support employee at the company, they informed me that the “tamper
flag” was set on my account and continually asked if [had dropped the device. After
a bit of convincing, I was able to have them replace my device at the store without
any fee. A thin saw blade purchased from Home Depot was used to saw through the
plastic parts that attached the outer panels to the board. Upon removing those
plastic connectors, the outer panels can be removed. The board now has four screws
keeping it attached to the center cage. After those are removed, and the anti-
disassembly pins are still in their original place, the board can be powered on and
booted.

Board
The front image of the board below is highlighted and labeled, describing major
components discussed in the contents of this paper. It is broken down into the
following:
* Major Components (Green)
o GPS Antenna for RoyalTek
o RaLink RT2150F
o Xilinx XC3S400A
o PicoChip PC202
Debug Pins (Blue and Green)
o (541
JP1
JP2
JP5
JP6
PL1
PL2

O O O O O O

il

Figure 2: Disassembled board, back view

Debug Pins

There were 5 obvious locations on the board where headers had been removed
(C541,]P2,]P5,]P6). Each of these was connected to a Saleae logic analyzer! and
sampled at various rates to attempt to determine if data was being transmitted over
those pins. If data was seen, it was analyzed in an attempt to determine what it
actually was.

Logic Analyzer

Alogic analyzer is a device that can be connected to ports on a board, sampling them
at different rates. This graph of high/low signals is then depicted to a user for
analysis. From there, it is possible to decode the data, based on a specific protocol, in
order to attempt to understand what the communication flow is. The Saleae Logic
software has the ability to auto analyze this data, which typically decodes into some
human readable format.

The workflow for sampling pins is as follows:

1. Use a millimeter to attempt to determine which of the pins is a ground, and
to ensure none are giving off higher voltage than the Saleae can handle

2. Attach the logic analyzer to the pins and configure it for a fairly high sample
rate (typically I would start at 16MHz and 10 billion samples)

3. Start the logic software and power on the device

4. After some variable time, stop the sampling and see if there are any high/low
lines

5. Attempt to “analyze” the lines. If errors are seen, lower the sampling rate and
start again.

Note: On the Saleae logic 16 you can increase the sample rate by configuring it to
sample less pins.

These definitions became clear over time, however initial interaction with the
Saleae device was confusing.

* Number of samples: This is how many times you want the little pins on the
board to detect if there is a signal or not.

* Sample rate: How many times per second that you want to check to see if
there is a signal.

So, if you increase the sample rate and keep the number of samples the same, it will
be finished sooner.

L http://www.saleae.com/logic/

C541
The first set of pins I decided to look at was labeled C541. Upon attaching the logic
analyzer and sampling, to my surprise, | saw some square lines indicating data.

ann ' Saleae Logic 10,15 - [Connecied] - (16 MHZ, 10 8 Samples)

ot samsies I iovo]

0

Figure 3: Zoomed out sample of C541

From here [added just about any analyzer that would allow me to only use one line.
Finally, using the Async Serial analyzer, [was able to see some data.

Note: The Async Serial analyzer has an ‘auto-baud’ feature which will attempt to
guess the baud rate of the line, but it is prone to error. If you see that some
characters are being shown and then some errors, the data is most likely there but
the baud rate is incorrect. You should attempt to change the baud rate to one of the
common rates.

e non . Saleas Logx 1.1.15 - [Connected]

59% ms

[16 MHz, 10 B Sasnples]

+1lms +2 ™
" "
0-0 L=
) Y
'r — 3 |

Figure 4: Async serial analysis of line 1

In order to actually see what was being transmitted, I exported the async-serial
analysis to a CSV, imported it to Excel, then copied and pasted the column I was
interested in to VI. With some search/replace magic the following was seen.

'255"' 1255 255" 1255 255" 255" 255" 255255255255 '255 " '255 255!
255"'255" 255" 255" '255" 255" '160"'162''0'0'221"'$GPGGA232354.755000M0.0
MO000*50

'239''176"''179''160"''162"''0"'2'221"'$GPGSV3111206428306510421648300324301
8*71
'12''209''176"''179"'160"''162"''0"'?2'221'SGPGSV321119400710336352233617911

17325*79
'12''227''176"''179"''160"''162''0'4'221'SGPGSV3311251023731081380702261*4

9
'192''176"'179''160"''162"'0"*'221"SGPRMC232354.755V150612N*4A

21176179 255" '255" 255255255 '255 " 255" 255" 255" 255" '255"1'2
55''255"'255" 255" 255" 255" "'255" 2557255 '160"'"'162''0""'2"'2"'16"''0" "1
8''176"''179"'255" 255" 255" 255" 255" '255" 2551255255255 '255" '255
'1255" 255" '255" 255" 1255 255" 1255255 '160"'"'162"''0'0'221'$GPGGA23235
9.736000M0.0M0000*58

'251''176"''179''160"''162"'0"'?2"'221"'SGPGSV3111206428306510421648300324301
8*71
'12''209''176"''179''160"''162"''0"'?2'221"'$GPGSV321119400710336352233617911

17325*79
'12''227''176"''179''160"''162''0'4'221'SGPGSV3311251023731081380702261*4

9

'192''176"''179''160"''162"'0"*'221"'SGPRMC232359.736V150612N*42

This looks like a bunch of garbage, however there is one reoccurring string in there
that stands out: $GPGSV32111.. after doing a quick Google search it became
obvious that this is the data being sent from the GPS module to somewhere else.
Looking at the placement of the GPS chip, this theory made sense. However, this was
of no real interest to me, as | wanted something I could interact with.

When configuring the device, you have to register a specific location (for 911 and so
you can’t use it in different countries). If you were inclined to use this device where
it is not registered (possibly outside of the country), it may be possible to remove
the GPS chip and place something that replays data that was captured at a valid
location.

JP1
Moving down the board, there is another set of four pins labeled JP1. The same
process described above was performed to view the data.

800 § Saleac Logic 3.1.15

o8 suroies B lowiz

[Conmcred] - [16 Mz, 10 B Sampiles)

20 &
+20s

el (O 10 1B

pny f‘ y

Figure 5: Zoomed out sample of JP1

Note that the zoomed out image has a much different pattern than the GPS debug
pins. Upon dumping the data, [saw something much more interesting:

Erased’ 1" 'sectors
Writing' "to' 'Flash...' 'dese
' ‘b_end' “=BF)FFFFF

Protecting® ‘'sectors’ "9..9" *in' “bank* '1
Protected” '1' "sectors

3:"' "Systea’ 'Beot' 'systea” ‘code” 'via' 'Flash.' "boot_loc:0' "OxBFM0000
22' "Bootimg' '"image' “at' D040V’
YRR Werifying' ‘Checksum’ ',,."' 'OK

' ‘Uscospressing” ‘Kermel' *Isage” ‘..." ‘0K
No' “initrg
28" “Transferring' 'comtrol® "to' "Linux" '(at" 'address' "B02200000)'
##' "Giving' 'limux' ‘memsize’ 'in" 'MB* ‘16

Starting' “kernel' !

\rAnLINUX® ‘started...\r

\n' CTHIS® IS "ASICANr\nLinux' ‘version' '2.6.21' "(perry@perry-pc)' *{gcc” ‘version' "3.3.6)" 'say" !
Thu* *Mar® *4' "16:17:18"' "CST' "2910\r

Figure 6: Dumped data from JP1

Linux boot text!

After doing a bit of reading, it seemed that this was a serial connection, just like old-
school RS232 ports used to connect to and debug routers and switches. [was able to
purchase a 3v3 FTDI USB cable that allowed me to connect to these pins and send
data in and out. The pin configuration is:

Tip: There was a long time where I was able to see data coming in over the wire,
however every time I tried to send data, it was not displayed properly on the screen.

[tried every possible line speed configuration and nothing worked. I then realized
that I had switched the RX and the Ground, which was causing everything to be
misinterpreted. Make sure your pin-out is correct.

After connecting the FTDI cable, I used screen to communicate with the board:
$ screen /dev/tty.usbserial-AFU80ROT 57600

The baud rate was determent based on what the logic analyzer auto-bauded.

After booting up the device, it proceeded through a UBoot boot loader sequence,
then through a normal Linux boot, straight to a ‘login:” prompt.

This was of high interest, but will be discussed further in the software section of this
paper.

JP2, JP5, JP6

There was no significant data seen on any of these pins. JP5 was the only set of pins
that showed any data. One of the pins had a constant high/low switch. No other pins
on JP5 transmitted any data.

Based on documentation found for the development board of the PC3022,
speculated that one of these pins was in fact the RS232 connection for the PicoChip,
but the documentation explained that the development board must have two
separate pins jumped for the TX/RX to be transmitted. No combination of jumping
the other pins was able to display any data on the line.

PL2

Initially, when sampling the PL2 pins, there was data coming on some of them.
However, none of the Saleae analyzers could decode the data. The PL2 has 14 pads,
laid out in two rows of seven. In turn, the logic analyzer was configured to use all of
its pins to sample. This only allowed for a maximum sampling rate of 16MHz per
pin. However, during sampling, there was only a small set of pins that were
transmitting data.

2 http://www.scribd.com/doc/53283168/PC-102851-ML-1-PC7302-Quick-Start-
Guide

4 W NEEEN EREEn
|

I U RV e
i _NEEN_ =EnEmn

Figure 7: PL2 pin sampling

Only sampling the three pins that were showing data allowed for a higher sampling
rate (up to 50MHz). Upon increasing the sample rate, and configuring an SPI
analyzer a different picture could be seen.

fann B salean Loge 1.1.15 - [Connmctad] - (12, 50mhz 2 Jogicdaca) - (50 MMz, 30 B Sampies]

......
5

) P2 30miz 2 loghcdat
IR vz Yomt2lopctes - J st

Figure 8: PL2 pin with SPI analyzer

[t took a bit of time to understand how to configure the SPI analyzer, but it makes
sense if you know some key concepts of SPI.

SPI
SPI1 is a protocol used for communication between chips. After understanding the
following points, it should make more sense on how the SPI analyzer was
configured:

* SPI can transmit at up to 100MHz (this is why we needed to increase the
speed of the Saleae)

* Communicates in a Master/Slave mode where there can be multiple slaves
* There are four lines:
o MOSI - Output
o MISO - Input
o Clock - Not like your typical metronome clock, but will be explained in
the next point
o Enable/Slave Select - Determine which slave the master is talking to
* The clock operates in one of two modes: “low to high” or “high to low.” Data
on one of the lines (MOSI, or MISO) is “read” when the clock is changing from
low to high, or high to low, depending on the mode. So, if it’s set up on “low to
high” mode, when you see the line on the clock go from bottom to top, that is
when the MOSI and MISO lines are read.

With that information, you can see that the clock is the one moving up and down the
most, and the output/input lines are the only other two sending data. In this case,
the Enable/Slave Select line is set as none.

®* 1=Clock
* 2=MOSI
* 3=MISO

Furthermore, you can see that the clock is set up in chucks of 16 up’s, that will mean
that the data being sent is most likely being transmitted in 16 bit or some mod of 16
bits. The above screenshots is displaying the text in ASCII with 8bit data chunks.

At the time of writing this, it is unclear what the data being transmitted actually is.

PL1

The Saleae logic analyzer did not display any data when being connected to the PL1
pins. However attempting to communicate with them using a common configuration
of JTAG was successful. Before getting into the details, a brief background on JTAG is
needed.

JTAG Background

JTAG is a method/standard used to test and manipulate hardware after it has
already been placed on a board. The full details of JTAG and how it works are
beyond the scope of this paper. However, there are a few key points that should be
understood:

1. JTAG pins, on their own, do not send any data. So you will not see anything if
you only have a logic analyzer connected

2. There are 5 pins that must be connected in order to communicate with a
device (VREF, TMS, TCK, TDO, TDI)

3. The cable provides the clock signal to the board (presumably that’s why
there is no data on the pins on their own)

4. Multiple chips can be “daisy chained” together. So one JTAG plug/pin-out can
communicate with multiple chips on a board
5. Each chip that is connected in a JTAG chain is called a TAP

There are two 2x7 headers (highlighted in RED: PL1 and PL2) located on the board.
Upon inquiry, colleagues thought that the configuration “screamed JTAG.”
However, only one of them was successfully communicated with.

Hardware/Software

The Olimex ARM-USB-0OCD-H? was used as a JTAG cable in order to communicate
with the board. OpenOCD software* was used to perform TAP discovery and further
JTAG communication.

The OpenOCD software uses a client/server architecture. The server is used to
facilitate user communication, scripting and debugging. To run the software, you
start the server, then can either connect to it via telnet or configure GDB as a remote
debugging session.

Pin-out Discovery
Since nothing was known about the board, the discovery of JTAG pins was done
through the following trial and error procedure:

1. If there is data on the pins, then its not JTAG

2. Ifthere is a known configuration for the pins, plug the JTAG up accordingly (if
this does not work, try the same configuration rotated 180 degrees, as we do
not know which is PINO)

3. Power on the device

4. Start OpenOCD software. If it can discover TAPs, then you have a JTAG port

PL1
The Xilinx Parallel pin-out® was used for the PL1 pads:

PL1

| x vg |
| x g |
| tdi g |
| tdo g |
| tck g |
| tms g |
| vref g |

3 https://www.olimex.com/dev/arm-usb-ocd-h.html
* http://openocd.sourceforge.net/

5 http://www.jtagtest.com/pinouts/xilinx

The OpenOCD documentation is upwards of 140 pages, and without wanting to read
it all, the first thing I searched for was other people’s experiences/tutorials. After
reading through several tutorials, and parts of the OpenOCD documentation, I
determined that in order to communicate with a chip I needed to configure
OpenOCD to communicate with my cable and configure a TAP. The OpenOCD
documentation states:

TAP configuration is the first thing that needs to be done after interface and reset
configuration. Sometimes it's hard finding out what TAPs exist, or how they are
identified. Vendor documentation is not always easy to find and use.

To help you get past such problems, OpenOCD has a limited autoprobing ability to look
at the scan chain, doing a blind interrogation and then reporting the TAPs it finds. To
use this mechanism, start the OpenOCD server with only data that configures your
JTAG interface, and arranges to come up with a slow clock (many devices don't support
fast JTAG clocks right when they come out of reset).

This means that TAP identification is partially automated. [came up with a plan
where the main workflow for discovering and communicating with JTAG devices
using OpenOCD was as follows:

Install OpenOCD software and OS drivers
Configure the cable in OpenOCD

Allow for OpenOCD AutoDiscovery

Use AutoDiscovery data to configure a TAP

B W=

OpenOCD installation was initially performed on an Ubuntu 11 OS through APT,
however due to some data discrepancies during initial communication, the
OpenOCD team pointed me to a new mpsse-driver version of OpenOCD. This
version was used and can be obtained via the following command:

$ git clone http://openocd.zylin.com/openocd && cd openocd && git fetch
origin refs/changes/34/534/5 && git checkout -b ftdi FETCH HEAD

By reading through the documentation I learned base configuration files are
included within a main configuration file using TCL commands. However | wanted

to include everything in a self contained config.

The OpenOCD project provides a configuration for the exact cable I am using:

#

Olimex ARM-USB-OCD-H

#

http://www.olimex.com/dev/arm-usb-ocd.html
#

interface ft2232
ft2232 device desc "Olimex OpenOCD JTAG ARM-USB-OCD-H"

ft2232 layout olimex-jtag
ft£2232 vid pid 0x15ba 0x002b

The only other addition that is needed is to define the JTAG speed with either an
‘adapter_khz’ or ‘jtag_rclk’. The OpenOCD documentation says that auto probing is
performed better at lower speeds and gives a sample configuration:

reset config trst and srst
jtag rclk 8

Which is what I used in my configuration file. The configuration file currently looks
like:

interface ft2232

ft2232 device desc "Olimex OpenOCD JTAG ARM-USB-OCD-H"
ft2232 layout olimex-jtag

ft£2232 vid pid 0x15ba 0x002b

reset config trst and srst

jtag rclk 8

Upon starting the OpenOCD server [was able to see that some sort of
communication was happening:

$ sudo ./openocd -f wuntee.cfg

Open On-Chip Debugger 0.5.0 (2012-07-02-13:56)

Licensed under GNU GPL v2

For bug reports, read
http://openocd.berlios.de/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'

3000 kHz

trst and srst separate srst gates jtag trst push pull srst open drain

RCLK - adaptive

Info : device: 6 "2232H"

Info : deviceID: 364511275

Info : SerialNumber: OLUTHMHO9A

Info : Description: Olimex OpenOCD JTAG ARM-USB-OCD-H A

Info : max TCK change to: 30000 kHz

Info : RCLK (adaptive clock speed)

Warn : There are no enabled taps. AUTO PROBING MIGHT NOT WORK!!

Warn : AUTO autoO.tap - use "jtag newtap auto0 tap -expected-id

0x02220093 ..."

Warn : AUTO autoO.tap - use "... -irlen 2"

Error: IR capture error at bit 2, saw Ox3FFFFFFFFFFFFFF5 not 0x...3

Warn : Bypassing JTAG setup events due to errors

Warn : gdb services need one or more targets defined

Auto probing seems to be working, but there were some errors.

Note: When attempting to communicate with a non JTAG port (or using a
misconfigured pin setup), one the following was seen:

1. The interrogation returned all ones

2. The interrogation returned all zeros
3. There was a timeout and there was no data received

The next step was to decipher what all of this meant. First I tried to telnet to the
OpenOCD command interface and run ‘jtag init’, which returned errors. After
googling the ‘expected-id’ displayed during auto probing, I found a few links which
were directly related to the specific Xilinx chip that is installed on the board. After
some more reading about OpenOCD and JTAG I found that in order to successfully
initialize the JTAG chain I was going to have to determine the correct combination of
the following things:

* expected-id
irlen
ircapture
irmask

Fortunately there is another concept/standard closely related to JTAG called
Boundary Scan Definition Language (BSDL) which is a configuration file on how to
communicate via JTAG to a chip. These files includes all of the information needed
above. Xilinx provides these for each of their specific chipsets through their
webpage®, and [was able to download the BSDL file for my specific Xilinx chip. A
quick search of the xc2s400.bsd file shows the following lines:

attribute INSTRUCTION LENGTH of XC3S400 BARE : entity is 6;

attribute INSTRUCTION CAPTURE of XC35400 BARE : entity is
-- Bit 5 is 1 when DONE is released (part of startup sequence)
-- Bit 4 is 1 if house-cleaning is complete
-— Bit 3 is ISC Enabled
-- Bit 2 is ISC Done
"XXXX01";

Using that information along with the auto-discovered “expected-id”, now could
put together a fully functional JTAG configuration file:

interface ft2232

ft2232 device desc "Olimex OpenOCD JTAG ARM-USB-OCD-H"

ft2232 layout olimex-jtag

ft£2232 vid pid 0x15ba 0x002b

reset config trst and srst

jtag rclk 8

jtag newtap xilinx tap —-irlen 6 -expected-id 0x02220093 -ircapture 0x01

Upon restarting the server, | saw the following output:

$ sudo openocd -f probe.cfg

6 http://www.xilinx.com/support/download/index.htm

Open On-Chip Debugger 0.6.0-dev-00603-g43863b6 (2012-07-10-12:01)

Licensed under GNU GPL v2

For bug reports, read
http://openocd.sourceforge.net/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'
RCLK - adaptive
3000 kHz

trst and srst separate srst gates jtag trst push pull srst open drain
Info : clock speed 3000 kHz

Info : JTAG tap: unkl.tap tap/device found: 0x02220093 (mfg: 0x049,
part: 0x2220, ver: 0xO0)

Warn : gdb services need one or more targets defined

The next step was to telnet to the OpenOCD command line interface and perform the
‘jtag init’ function. Which upon success should look like this:

> jtag init
Info : JTAG tap: unkl.tap tap/device found: 0x02220093 (mfg: 0x049,
part: 0x2220, ver: 0x0)

I now had a functioning JTAG communication channel to the Xilinx chip. However, there
was not much | could accomplish with that. During this process, the one thing | failed to
realize was that there wasn’t much of anything | could gain from this particular JTAG
access. JTAG is a very open protocol which defines very few operations. My main goal
was to gain access to the PicoChip or the Flash chip connected to it. These would have
showed up in the auto probe if they were in the JTAG chain. Although this was an
excellent learning experience, it got me no closer to my goal.

Software

As explained in a previous section, [was able to obtain access to a serial
communication channel that brought us to a Linux ‘login’ prompt. My goal now was
to gain access to this operating system.

Obtaining the Filesystem

Initially, | was not starting the serial cable terminal session until after the device
was booted up which meant not being able to see the beginning of the boot process.
When I plugged the serial FTDI cable to the pins on the device, started ‘screen’, and
then booted the device up, I noticed that there was a small pause after the UBoot
text.

Ralink UBoot Version: 3.7.1

ASIC 2150 MP2 (MAC to GigaMAC Mode)
DRAM COMPONENT: 128Mbits

DRAM BUS: 16BIT

Total memory: 16 MBytes

Date:Jan 7 2009 Time:12:26:56

icache: sets:256, ways:4, linesz:32 ,total:32768
dcache: sets:128, ways:4, linesz:32 ,total:16384

###44# The CPU freq = 384 MHZ ####

SDRAM bus set to 16 bit
SDRAM size =16 Mbytes

Please choose the operation:
1: Load system code to SDRAM via TFTP.

2: Load system code then write to Flash via TFTP.

3: Boot system code via Flash (default).

4: Entr boot command line interface.

9: Load Boot Loader code then write to Flash via TFTP.
<PAUSE>

At that <PAUSE> I was able to quickly press ‘4’ and enter into the UBoot command
line interface. Without knowing much about UBoot (or bootloaders in general) I
then started reading the UBoot manual’ to see what functionality was available to
me.

After a bit of contemplation, I decided that the ‘md’ or memory display command
was going to be my best bet. The ‘md’ command would allow me to display any
arbitrary memory location on the flash chip. At this point [was also able to find a
page that had some information on the board. The page used to be hosted on http://
exploitworkshop.org/ ,but had since been taken down. Luckily Google’s cache still
had it (the cached page is no longer up), and I saved it locally. One key piece of
information it had was a memory layout of the flash chip:

Ralink
The 1ull 4AMIB File:MX raw bz2 dump
PM0I0000 « OxCI03000 Ksegl ursapped, uscached
OXACARLOZ20 PRY tXxX Ting, size: IS bytes
OxALAR2010 phy _rx ring, sige: 14 Bytes
QantO02080 ~ x0J0030% Ralink Registers
0x302005) »ex 8230z CLyS0 (irq = J7) is a 16330A

Ox3020eC) e
0xBrocd080 - OxBrdo0a02 MK ¢

2500 suysl (drq ~ 11) is 2 16550A
h device: (MNiB Flaah (See 0xBFCOO0N0)

OEBre0d080 « IxBre0ti0d KX flash devicer 4xis rlash (Jee OxBICeO090)
OxBreci020 - AxBrCO0I00 ME flash device: 4MiIB Flaah (See 0xBFCCO0N0)
OABICO080 =« SO0 0% AL Fiash IXx.rav.bad)

Oxarcoi0o0d - xBrCof0 "sootlcader”
FRBrCI0N00 « OanrCiErs T y
OxBFCIEIE4 - 0xANCIESDL T-Boot defauit config

OxBrCIi00) « MaBrclone “Coarig”
ExrCI0000 - OxRFCIV3iD 4d Jb ac §
IXBICI4000 « OaBrcivyls 23 % 4
Oxarcito0d - xarCdoti0 “Comfigl”
IXBrCION0D « DaBrCIeES) 23 %21 4a & 98 01 (PIC0 coafig?)

ExXMCINFIC - Oxmrclarrsr &8 B4 02 €0 10 00 (shast switch iafeoln)
QxBrC4to0) - OxBrE0000 “Earnel”

FxMCA000 ~ OxRIFDOCATS '

IXBDEOIO0 - OxBIOFAALDL

XMEI000 ~ DERFEISADAA
OxAre2e00) - xC020000 “Nernel”

SXMEIONO0 ~ OEBFTECATS 27 05 1% 54 20 36 (U200t LM "LiINEX Xernel Image”)

IxXBYCOI00 -~ OxDITITEDS J8 d& o2)35 B2 % (Xernell.extral - poasibly lzma compressed sgeashis)

ABagel “Linex Xarnel fmage”)
al 84 b dd (Xern extral - unideatified)
i Loaxtral ~ unideatitied)

Figure 9: ExploitWorkshop.org Ralink flash layout

7 http://www.denx.de /wiki/publish/DULG/DULG-tqgm8xxl.html

http://exploitworkshop.org/
http://exploitworkshop.org/
http://exploitworkshop.org/
http://exploitworkshop.org/

From here [was able to create a command that would dump the full 4M flash chip
using the ‘md’ command in the UBoot boot loader. While it was dumping the raw
memory, | was using ‘screen’ to log the output.

RT2150 # md bfc00000 1000000

bfc00000: 100000£ff 00000000 100000fd 00000000 vivnnonn..
bfc00010: 10000219 00000000 10000217 00000000 ..viiivinnnnn.
bfc00020: 10000215 00000000 10000213 00000000 ..viviiiinnnnnn

bfffffd0: ffffffff £ELFEEFF LEELFLFFE £EEEEEFE Lo oot
bfffffelO: ffffffff ffffffff fEEE£FFEf fEEEEEEE Lot
bEffffff0: fff£fffff fEfFFfEff £EEEE£FFEf £EEEEEEF Lo oot

[then created a ruby script that allowed me to convert the raw dump into a binary
file. This took a bit of time as [had to take into account things like endianness. The
script can be seen in Appendix A.

After having a clean binary dump of the file, I ran strings on the entire thing to
ensure that it was in fact what [was looking for.

$ strings -n 10 full flash.bin | head
___remove_pages

TERM=11inux

<4>Parameter %s is obsolete, ignored
<3>Unknown boot option "%s': ignoring
Too many boot env vars at ~%s'

Too many boot init vars at ~%s'
<4>Malformed early option '%s'

early options

<5>Kernel command line: %s

Booting kernel

There is a tutorial on extracting firmware from a Linksys router® that became the
basis of my methodology for attempting to get some sort of filesystem out of this
dump.

First, running ‘binwalk’® on the initial image resulted in the following output:

L it LR comprensed dota, properties BB Actiomory sioe BOWANA bytes, wompreised siae: SOAME bytes
san ™ LN comprennad doma, propertiss: B, Sictionary vide: SIS Sytes, wncompresiad iae: NOM bytes

Heow vimoge heoder, heoder siae: 04 bytes, Seader CBC: BNCRMOEND, crwoted: Thy Mor & 000729 2000, woge vioe DAIOAT bytes, Dot Addrwis:
SN0, fatry Puiet DMUMD, dote ORC BaNOCANN, OF: Comas, ORU MIPS, wnige o OF Mavwel Dacge, Compression Type ! Lame, nage nome Lins eovel Jeoge
e Rl LS comprensed dota, propertien: 8D, Mctionory e INISAER Sytes, wncompressed sipe: NI bytes

pgs i) Bl TN e Peider, Peiier slan] B ytes, Neader ONC NGNS, crestad: Thu Mar 4 003700 2000, inige wide SRNOAT bytes, Duns Addewss:
SN0, Doty Puist: BNUANG, doto OB BONDCAN, 06: Lumas, OV WIPS, wmoge tyow: 05 Korvel Deoge, comprension type: Lawo, tnage nome: Lines Kervel Jeoge
s Slown LR Gmgresind S, prigertien | 8D, Sty siae IS tes, wimpresand diie MR e

Figure 10: Initial binwalk of the flash dump

8 http://www.devttys0.com/2011/05 /reverse-engineering-firmware-linksys-
wagl20n/

% http://code.google.com/p/binwalk/

This pretty much matched the memory layout from the ExploitWorkshop web page.
From here, the LZMA partitions were dumped using ‘df and each was attempted to
be un-lzma’ed. The only partition that was successfully decompressed was the last
one. This partition showed even more information when ‘strings’ was run against
it.However, ‘file’ only showed it as a data blob. I then ran ‘binwalk’ on the unlzmaed
file, which returned a whole set of new LZMAed partitions.

x AMXIFTION

L Mctvmory sioe BOUIAEE bytes, wrooprensed sioe: TMIIM bytes
Slctuonary vide LI Dytes, wcomgreiaed wiae: JT2R0GI00 bytes

L Actvorory vioe. GDMLINEE bytes, wncomprwnsed yioe: 1MIIETET bytes

L, SOy siae GBI bytes, woimgreiind siae JESAIUNT bytes

, Slctuorory vide: JMNSM bytes, encomprensed yise: JPNGETING bytes

L Ay sioe M e, wiimgreiaad sioe . SEILTNS bptes

, Slctionory vise: JEMIM bytes, encosprensed wise: SIO% bytes

L Mctvmery sioe DTN btes, snompressed sioe JTRMCME bytes

LD Cmpreined ama, propertien: Bl Sictionary wiae: 4TI Dytes, wncompresiad wise. AMIDIELA bytes

L3 compressed dota, propertve: B, Actionory vice: €TIN bytes, wncomprensed yioe: ST bytes

L Gamprwinnd e, progerties: Bl SL0tiamary Siae DRI Bytes, wniamprwiand dhae; AR bytes

THY

jatit
LR
i
111
{ili
s$ids
1111113

37

E
E

mmnn.n- TRAAAUS TN ytes, LUOINTE (s, Mlaikaiae 16

f

Mﬁlwmm Lo compressiin, version AU JARY, shre: SORNIITING MY ytes, TEMENAL dsodes, Mackaiae: 3N

i
it
il
i
¥
|

s.-mmwnmu-m veryion TR ALY, sire: MRS TS bytes, JESSMIETY (redes, Blockyioe: T

;mmgi

E
i

I‘hhlwi\oml-m vervion 29556 23O, sre: TRAMUMISNILIGAED bytes, JENSMOOML Lredes, blockyioe: 1

£
-
L
'
-
H

Sauoahfs Nlenter, Mg endion, 1ona comprematon, vervion SN2 20085, sioe: IDBGEIIISAMAEINL bytes, JEMSNOWES trodes, blockeize: 1

L L]
Arveted W
dase
Arewted
B2OwWC L compreised dona, properties: B, Sictionary wise: SIEDRILI bytes, wncomprensed wise: EXINS bytes
e L) m“mmmqmmmmwmm
)
L e
Lt
DA

i
{
i

Lo rew 0.0 w2 il &“‘ < ‘mmwmnw

and attempted to ‘unsquash’ them; nothing succeeded. I then attempted to modify
the file’s ‘magic’ within the dump similar to the tutorial mentioned above. Again,
nothing worked.

‘dd’ was used again to dump each of the LZMA portions to files. Each partition was
then decompressed. The only one that succeeded was, of course, the last. Running
‘strings’ on this newly decompressed file displayed:

lzma4.18: ASCII cpio archive (SVR4 with no CRC)

Being the impatient person I am, I saw ‘ASCII" and assumed that it was nothing. I
then ran ‘binwalk’ again on this file which displayed much more promising
information:

Figure 12: Binwalk output for 1zma4.18

This showed that there were actually MIPS binaries in the file. Viewing the contents
of the decompressed file gave me a little more insight:

Figure 13: Contents of 1zma4.18

You can see some long numbers, then a filename, then some random data. After
googling around a bit [was able to conclude that the file was in fact a ‘CPIO Archive’.
[then re-looked at the output of the ‘file’ command, and proceeded to see what an
idiot [was.

The next step was to un-cpio the file. Using ‘cpio’ to list the files confirmed that this
was a valid archive:

$ cpio -it -F 1lzma4.18
/init

/var

/proc

/usr

/usr/sbin
/usr/sbin/setlogcons
/usr/sbin/ipc client
/usr/sbin/config server
/usr/sbin/cs_client
/usr/sbin/telnetd
/usr/sbin/udhcpd
/usr/sbin/rmm client
/usr/sbin/chpasswd
/usr/sbin/ipc_server
/usr/bin

After reading a bit about CPIO I realized there was a limitation; when un-archiving a
CPIO archive, the files go to their exact locations and there did not seem to be a way
to change this to a relative directory. Instead, I had to ‘Rename files interactively’ -
there were 208 files.

Gaining Root Access

I now had the boot filesystem and the first thing I looked for was the /etc/passwd
file. There were two users (root and sshd), both having the same password hash.
This was a 14 character string that did not look like anything | had seen in an /etc/
passwd file (after some research, it was an old-school crypt() style hash), however I
still ran John the Ripper against it on a server I had at home. After two days of
nothing, I did not have any faith that the hash was going to be cracked, so I then
attempted to look for another way of gaining access to the operating system.

The first thing I wanted to understand was the boot process. I started looking at the
strings that were displayed during the boot procedure and referencing them within
files that I dumped. This included viewing the contents of scripts, as well as
decompiling and reversing binary applications. All of the executables were MIPS
binaries, which I was not familiar with, introducing another learning curve. After a
few days of reversing, I found nothing useful. The main place I was looking was the /
sbin/*.sh scripts, as well as certain binaries that simply ran the ‘_eval‘ function
without sanitizing input. The majority of these commands first obtained values from
a part of the flash called ‘PICO_CONFIG.” This portion of memory was basically a
nested array of key value pairs and was accessed via the ‘cs_client’ application.

[dev]--[switch]--[num]--[7]
[wan]--[num]--[1]
[0]--[conn_type 1--[1 1]
[ip 1--[0.0.0.0]
[netmask]--[0.0.0.0]
[mtu]--[1500]
[dev_name]--[eth2.2]
[gateway]--[num]--[0]
[0 1--[ip 1--[0.0.0.0 1
[sys]1--[op_mode]--[0]
[basic realm]--[W3GFP-100]
[host]--[name]--[PICO ROUTER]
[swdirurl]--[tftp://192.168.157.186/754~-
image-1.0.25]
[restore default]--[0]
[tamper proof]--[100110]
[fw]--[0]1--[name]--[/tmp/754-image-1.0.25]
[swdirurl]--[tftp://
192.168.157.186/754-1image-1.0.25]
[1 1--[name]--[/tmp/840-router-1.0.31]
[swdirurl]--[tftp://
192.168.157.186/840-router-1.0.31]
[boot loc]--[0]
[tampered]--]]
[serial num]--[157750777]

[firewall]--[pf 1--[enable]--[1]
[num J--[3]
[O]1--[proto]--[tcp]
[port 1--[80 1
[dstip 1--[192.168.157.186 1
[1 1--[proto]1--[tcp]
[port]1--[22]
[dstip 1--[192.168.157.186]
[2]--[proto]--[tcp]
[port]--[8080]
[dstip 1--[192.168.157.186 1
[3 1--[proto 1--[tcp]
[port]1--[20000]
[dstip 1--[192.168.157.186]
enable]1--[1]
snat]--[enable]--[0]
[num]--[0]
[ipcserver]--[enable]--[1]

There are a few interesting things in there:

1. tamper_proof - this seems to be the configuration of the ‘tamper’ pins on the
front and back of the board. One of the applications actually allows you to set
the device in ‘learn mode,” which presumably writes the current pin

configuration.

2. There looks like firmware images on a 192.168.157.186 host
3. There is a firewall node that resembles what is being seen at boot

[FW] [Cliptables -t

§ DNAT --to 192.168.

[FW] [Cliptables -t

j DNAT --to 192.168.

[FW] [C]liptables -t

nat

157.

nat

157.

nat

-A PREROUTING -p tcp --dst 0.0.0.0 --dport 80 -
186:80
-A PREROUTING -p tcp --dst 0.0.0.0 --dport 22 -
186:22
-A PREROUTING -p tcp --dst 0.0.0.0 --dport 8080

-j DNAT --to 192.168.157.186:8080

This was of interest because when disassembling the ‘config_server’ application, I

found this:

First the application uses ‘cs_client’ to pull static keys out of the PICO_CONFIG, then
for the ‘iptables’ portion it initializes a command here:

loc_W12328:

1a $a0, axasnued

nop

addiu $aB, (dword 465020 - BxS60000)

1w San, (dword_L&Sn20 BxM6SAZ0)(Sa0)
1a $at1, axA20000

nop

addiu $at, (alptablesTHat_2 - OxA20000) # "iptable t nat A PRERDUTING -p % d
move $a3, $s8

w $s1, axasevar_an($sp)

oW $s0, axassvar _30($sp)

w“w $s0, axassvar 38($sp)

1a $19, cs_execute_ia

nop

jalr $19 ; cs_execute_id

nop

1w Sop, @xh8evar 28($sp)

b loc_N12254

addiu $s2, 1

Tip: If you see the last 2 lines of this function, it does a ‘b loc_412254’ and then
performs another ‘addiu’ instruction. This was confusing because the branch
instruction will always be called, so how is the ‘addiu’ instruction called? This is
possible because MIPS architecture implements ‘instruction pipelining.’ Meaning
that at the same time one instruction is executed, the next instruction is loaded into
the “pipeline.” The branch happens, and the ‘addiu’ instruction is in queue, then the
addiu is pushed to the current instruction, and the start of the branch target is
loaded. This is also why you see some random ‘NOP’s.

The application then jumps to ‘cs_execute_id’ which performs...

1a $t9, cs_log

nop

jalr $t9 ; c¢s_log

nop

1w Sgp, GxhhsGevar_h30($sp)
nove $an, $so

1a $a1, @xs20008

nop

addiv $a1, (aDeuNull21 - OxA420008) # “>/dev/null 25817
la $t9, strcat

nop

jalr $t9 ; strcat

nop

1w Sgp, Bxssfevar 436($sp)
nop

1a Su1, BxKZ0000

nop

addiu $v1, (aC - Bxh20000) o "¢’
addiu $a0, S$sp, OxhhBevar 28

nove $a1, S$zero

nove $az, $zero

nove $a3, Szero

1a Sub, Bxh20000

nop

addiu SvD, (aSh - Bx420000) U “sh”
sW $s50, mxantevar 20($sp)
) Svb, exsadevar 28(3$sp)
SW Sv1, axanosvar 25($sp)
sw $zero, GxshBevar 1C(S$sp)
1a $t9, eval

nop

jalr $t9 ; _eval

nop

1w Sgp, @xhhfevar hK36($sp)
1w $ra, exhadsvar 8($sp)
1w $52, exasfevar 10($sp)
1w $s1, Bxandevar_15($sp)
1w $s0, Bxhsntevar 18($sp)
nove Sun, S$zero

ir Sra

addiu $sp, Oxhs6
End of fFunction cs execute 1id

or,

_eval (sh -c [IPTABLES STRING] > /dev/null 2>&l)

There is no sanitization of the PICO_CONFIG or the return of the ‘cs_config’
command used to obtain the iptables string. If I could modify this PICO_CONFIG
portion of flash, I would have command injection.

The UBoot command prompt not only had the ability to read from flash, but also to
write to it. If | could write to flash and modify the PICO_CONFIG data, I should be
able to gain access to the device. Unfortunately, everything that I tried did not work.
Any ‘write to flash’ commands would not actually write (reading that same memory
address back would not show changes after a write). This is when I realized that
there is a ‘protect’ command in UBoot as well, and based on the boot messages,
much of the flash memory is protected from being written to.

In an attempt to un-protect memory sectors, | discovered a command that showed
environmental variables and commands. One in particular showed ‘protect off™:

RT2150 # printenv

bootcmd=tftp

bootdelay=3

baudrate=57600

ethaddr="00:AA:BB:CC:DD:10"

ipaddr=10.10.10.123

serverip=10.10.10.3

preboot=echo;echo

ramargs=setenv bootargs root=/dev/ram rw

addip=setenv bootargs $(bootargs) ip=$(ipaddr) :$(serverip) :$
(gatewayip) :$ (netmask) : $ (hostname) : $ (netdev) :0ff
addmisc=setenv bootargs $(bootargs) console=ttyS0,$ (baudrate) ethaddr=$
(ethaddr) panic=1

flash self=run ramargs addip addmisc;bootm $(kernel addr) $
(ramdisk addr)

kernel addr=BFC40000

u-boot=u-boot.bin

load=tftp 8A100000 $ (u-boot)

u_b=protect off 1:0-1;era 1:0-1;cp.b 82100000 BC400000 $(filesize)
loadfs=tftp 8A100000 root.cramfs

u_fs=era bc540000 bc83ffff;cp.b 8A100000 BC540000 $(filesize)
test tftp=tftp 8A100000 root.cramfs;run test tftp

boot loc=0

backdoor=0

manuf test=0

fail cnt=0

stdin=serial

stdout=serial

stderr=serial

ethact=Eth0 (10/100-M)

Environment size: 829/65532 bytes

In an attempt to turn off memory protection and write to a configuration portion of
flash, I ran the command ‘u_b’. I did this prior to understanding what it did, and this
resulted in a second brick. It essentially erased the entire flash chip.

After a few days, | again was able to manipulate the technical support and sales
people into replacing my device: “I don’t know what happened, it just stopped
working!”

Reversing the Kernel function table

During the wait for my new device to arrive, I realized that not only did I have the
boot filesystem, but I also had the raw Linux kernel image. One of the binwalks
showed:

DECIMAL HEX DESCRIPTION

2228224 0x220000 ulmage header, created: Thu Mar 4
03:17:29 2010, image size: 1690167 bytes, Data Address: 0x80000000,
Entry Point: 0x802A0000, CRC: 0x70DC4C09, 0OS: Linux, CPU: MIPS, image

type: 0OS Kernel Image, compression type: lzma, image name: Linux Kernel
Image

After dumping this with ‘dd” and attempting to load it in IDA, I was able to find the
correct configuration (which was all given to me in the binwalk):

The file loaded will be of type ‘mipsl’, because the ‘file’ command on any of the
binaries shows that they are ‘LSB’ (least significant bit).

& N
@ Disassembly memory organization ot v

RAM
¥ | Create RAM saction

RAM start address QxS0000000 v
RAM sre Ox3320CC -
ROM

[Create ROM saction

ROM start address OnD v
ROM size Ox3820CC v
Input Sle

Loading address OnB0000000 v
Fie offset 0 -
Loadng sze x3320CC v

Addtional binary flles can be loaded Into the database using the
Fie, Load fle, Addtional binary fle” command.

ok][conc
\ 4

Figure 14: IDA Configuration to load the ramdisk

To get the decompiled image [manually went to the entry point (0x80220000) and
press ‘c’ to start the analysis.

This will start generating blocks and eventually you will end up with a bunch of
unnamed functions. This is the kernel, however it is not very useful since it has a
lack of names and symbols. When looking at the ‘strings’ in IDA, I noticed that there
were a lot of what looked like kernel function names.

(22" Stings window

Address Length
" RAM:8023... 00000D00F
" RAM:8028... 0oonoo 2
" RAM:8028... 00000010
" RAM:8028... 0000000F
" RAM:8023... 00000016
" RAM:8028... 00000016
" RAM:8028... 0000000E
" RAM:8028... 00000019
" RAM:8028... 00000D00E
" RAM:8028... 00000010
" RAM:8028... 0000000F
" RAM:8028... 00000014
" RAM:8028... 0000000E
" RAM:8028... 00000013
" RAM:8028... 00000010
" RAM:8028... 00000ooC
" RAM:8028... 00000010
L RAM:8023... 00000010
" RAM:8028... 0000000E
. RAM:8028... 00000010
" RAM:8027... 00000011

Type

Lo e T o Y s T e O e Y s Y s T e O e Y s Y s T e Y e Y s N s T s I o B s B

]

v Sting

blk_do_ordered
blk_dump_rq_flags
blk_end_sync_rq
blk_execute_rq
blk_execute_rq_nowait
blk_execute_rq_nowait
blk_free_tags
blk_get_backing_dev_info
blk_get_queue
blk_get_request
blk_init_queue
blk_init_gueue_node
blk_init_tags
blk_insert_request
blk_mazx_low_pfn
blk_max_pfn
blk_plug_device
blk_plug_device
blk_put_queue
blk_put_request
blk_queue_bounce

Figure 15: Kernel functions in IDA strings

After doing a bit of analysis, | determined that there was a portion of the ramdisk
that was a linked list associating memory addresses of the start of a function to the
text representation of what that function was. I was able to confirm this by finding
the start address of the ‘memcpy’ string, then searching for that sequence of bytes in
the rest of the image. There was only one other location that displayed this value
within the file. The next 4 bytes was the memory address of the start of a function.

[was then able to write a ruby script (Appendix B) that stripped the strings and
addresses out of the ramdisk and generated an IDA script which could be loaded to

rename all of the functions with their proper names.

Binclude <idc.idc>
static main() {

MakeName (@x8028afc8,
MakeName (@x80383000,
MakeName (@x80383008,
MakeName (@x8028b4d4,
MakeName (@x80002clc,
MakeName (@x80004920,
MakeName (@x80384000,
MakeName (@x80004a2c,
MakeName (@x8038502c,
MakeName (@x80006390,
MakeName (@x8022a380,
MakeName (@x8022a4d8,
MakeName(0x80384040, "
MakeName (0x80384274,

"init_mm");
"init_task");
"system_state");
"reset_devices");
"loops_per_jiffy");
"init_uts_ns");
“"get_surfboard_sysclk");
"allocate_irgno");
“"free_irgno");
“pm_power_off");
"__up");
"__down");

down_interruptible");
“cpu_data");

Figure 16: IDA script to rename functions

= "@] Functions window 2=l
¥ Function name Sear *
"@] local_flush_data_cache_page RaM
\@] lock_rename RamM
M locks_init_lock RAM
‘Loj] locks_mandatory_area RaM
"@] malloc_sizes RaM =
"@] mark_page_accessed RaM
‘Eﬂ memchr Rt
: MEMCPY R

\@] memmove RaM
"@] memparse RaM
"@] Memscan Ram
"@] memset R
"@] mod_timer Ram
"@] mpage_writepage RaM
"Eﬂ mutex_lock Ram
"@] mutex_trylock RaM
"@] names_cachep RaM
?'@] nobh_truncate_page RaM

Figure 17: Renamed functions in IDA

This did not rename all of the functions. However, it did give me a much better idea
of what was going on in the loaded image.

John the Ripper

Also, while waiting for my new device to arrive, | was greeted to a lovely surprise
from John. After 7 days, the root password was cracked. It ended up beinga 7
character, all lower case string. This would now give me access to the actual
operating system.

GPL
Around this same time, I received an email from a friend linking me to the software
license agreement for the particular device. Specifically, it states:

Where specific free/open source license terms (such as the GNU Lesser/General Public
License) entitle you to the source code of such software, that source code will be
available to you at cost from [COMPANY] for at least three years from the purchase
date of your product. If you would like a copy on a CD of such open source code, upon
written request and receipt of payment of $9.99 (to cover shipping and handling
costs), [COMPANY] will mail to you a copy. Please send your written request and
check payment (payable to [COMPANY]), together with your name, mailing address,
email address and phone number to:

Which was followed with a mailing address and an email address for any questions.
[sent an email to the address asking if it was possible to obtain access to the GPL’ed
software without mailing for a CD. They happily provided me with two FTP links for
the following files:

* DPH151_V1.0.25-5.tar.gz - This is the full build chain for the device that will
allow you to build an image file for the device on Ubuntu OS. It contains a
configuration file that allows full control of what applications are included in
the final image.

ip.access-AP-IPA1.0-3.zip - This seems to be source code for another (PICO)
processor on the board. It does not contain a full build chain. It is just the
source code for specific packages and patches, as well as the licenses for the
associated packages.

RALink Internals

My new device arrived and [was now able to gain access to the RALink, or as it’s
referred to internal to the source, the Router. From here a lot of the internal
architecture became clearer.

Architecture

Upon power up, the router/Ralink chip is booted first. Then it sends a GPIO signal to
the pico chip, which is then powered on. The router initiates a DHCP daemon on a
local IP address of 192.168.157.185/30 where the pico chip will send a request and
get 192.168.157.186. All network communication from the pico chip will be routed
through the routers interface and then out to the network.

IPtables

The router sets up a NAT to forward a few ports to the pico chip. However, none of
those ports seem to be open. In fact, after performing a port scan, no ports on the
pico chip seem to be open.

Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source
destination

0 0 DNAT tcp -- * * 0.0.0.0/0
0.0.0.0 tcp dpt:80 to0:192.168.157.186:80

0 0 DNAT tecp -- % * 0.0.0.0/0
0.0.0.0 tcp dpt:22 to0:192.168.157.186:22

0 0 DNAT tcp -- % * 0.0.0.0/0
0.0.0.0 tcp dpt:8080 t0:192.168.157.186:8080

Chain POSTROUTING (policy ACCEPT 11 packets, 660 bytes)

pkts bytes target prot opt in out source
destination

0 0 MASQUERADE all -- * eth2.2 192.168.157.184/30
0.0.0.0/0

Chain OUTPUT (policy ACCEPT 11 packets, 660 bytes)
pkts bytes target prot opt in out source
destination

ipcserver

There is an [PCserver that is running on the router that allows specific commands to
be sent (from either the pico processor or the router) to obtain information about
the device (such as uptime, tamper status, etc).

The ‘ipc_client’ on the router has the following functions.
command list: reset factory reset tamper download finished

wizard

This seems to listen for commands on a multicast address and return the associated
command data. Any command that has arguments should be vulnerable to
command injection. This is similar to the explanation of the vulnerability in the
[Ptables setup. The failOverflow team was able to discover that one of these
commands would allow you to run remote commands on the device'®,

cfg_flash

As named, this application reads and writes data to the flash chip’s PICO_CONFIG
section. This application has the ability to create a telnet backdoor to the device.
Upon normal boot, telnet is bound to the routers internal address, however if you
run the following command:

cfg flash -s -n backdoor -v 1

the telnet daemon will be listening on all IP address upon reboot. However, the
‘config_server’ and the ‘wizard’ will always switch this flag back off, so the above
command must to be run prior to each reboot for the telnet backdoor to persist.

Debugging Binaries

‘tcpdump.lzma’ was the only debugging utility found on the device. It can be
decompressed and run as tcpdump. Any other binaries must be compiled
specifically for the device.

Cross Compiling

In order to run any external application on this device, it must be compiled
specifically for MIPS LSB and statically linked. Prior to having the full build chain,
this was performed using ‘gemu’. The details of how to create and compile
applications through gemu can be found in a recent blog post!.

Adding raw application source to the build chain, or enabling them in the provided
build chain configuration was sufficient for building new applications quickly.

10 http://failOverflow.com/blog/2012 /microcell-fail.html

1 http://intrepidusgroup.com/insight/2011/10/gemu-mips-netcat/

Appendix A: memToBin.rb

#!/usr/bin/env ruby
infile = ARGV [0]
outfile = ARGV [1]
start = ARGV [2]
finish = ARGV [3]
puts ("#{start} - #{finish}");
#bfc00000: 100000ff 00000000 100000fd 00000000 v iv i iveeeennnn
f = File.new(infile, "r")
fout = File.new(outfile, "w")
writeFlag = false
while(line = f.gets)
splitLine = line.strip.split(/\s+/, 6)
if(splitLine.size == 6)
address=splitLine[0]
address=address [0, 8]
hexl=splitLine[1l]
hex2=splitLine[2]
hex3=splitLine[3]
hex4=splitLine[4]
ascii=splitLine[5]
str = "#{address} #{hexl}#{hex2}#{hex3}#{hex4} #{ascii}"
if (address.downcase == start.downcase)
puts ("Found start: #{str}")
writeFlag = true;

end

if(writeFlag == true)
unhexl=[hex1] .pack ("H*") .reverse
unhex2=[hex2] .pack ("H*") .reverse
unhex3=[hex3] .pack ("H*") .reverse
unhex4=[hex4] .pack ("H*") .reverse
unhex = unhexl + unhex2 + unhex3 + unhex4
fout.write (unhex)

end

if (address.downcase == finish.downcase)
puts ("Found finish: #{str}")
fout.close();
exit

end

end
end
f.close()

Appendix B: genSymbolTable.rb

#!/usr/bin/env ruby

def hex (hex)
return (hex.to s (16).rjust (2, "0"))
end

def hexToAddr (hex)

01234567

54cc2780

should be

8027cc5h4

return hex (hex[3])+hex(hex[2])+hex (hex[1])+thex (hex[0])
end

off base = 0x80000000
off start = 0Ox27ccédc
off end = 0x286fbd

addr off start = 0x2761c4
addr off end = 0x27a8c4

f ramdisk = "ramdisk"
separator = 0x00

f = File.open(f ramdisk, "r")
file = f.read()

ctr = 0

func = ""

addr_str link = {}

for i in (0 .. (addr off end - addr off start)/8)
0= [0 .. 3] [4 7]
1 =1[8 .. 111 : [12 .. 15]
2 = [1l6e .. 201 : [21 .. 25]
str addr_start = 8 * i

str addr _end = str addr_start + 3

func addr start = str addr end + 1

func addr end = func addr start + 3

str addr = hexToAddr (file[addr off start+str addr start
addr off start+str addr end])

func_addr = hexToAddr (file[addr off start+func addr start
addr_off start+func addr end])

addr str link[str addr] = func_ addr
end

#addr str link.each { |k,v| puts "#{k} => #{v}" }
last _addr_str = off base + off start

file[off start .. off end].split(//).each do |f c|
if(f ¢ !'= "\0") then
func = func + £ ¢

else

if (func.strip != "") then
str addr = last addr str.to s(16)
#puts ("Looking for: " + str addr + " (" + func + ")")
func _addr = addr str link[str_ addr]
#puts (func + " = " + func_addr)
puts ("MakeName (0x" + func_addr + ", \"" + func +
RARD IR
func = ""
end

last addr_str = off base + off start + ctr + 1
end
ctr = ctr + 1
end

