
Advanced Windows Exploitation
Dave Aitel

Immunity, Inc
http://www.immunitysec.com/

Agenda

– What is Immunity?
– Windows for Unix Hackers
– DCE-RPC
– Finding bugs with SPIKE
– MS-SQL
– The shellcode problem
– Heap Overflows
– IIS
– Demos, other fun

Immunity, Inc

● New York City based Corporation
● 7 Months old, privately financed
● Information Security Services

– Application focus
– Protocol Analysis
– Training
– Cutting Edge Products

● CANVAS
● BODYGUARD
● SPIKE, SPIKE Proxy

Windows for Unix Hackers

● Windows
● X86
● Component

Architecture
● Privilege tokens
● Threaded
● Closed Source

● Unix
● x86/RISC
● Process architecture
● User ID
● Forked
● Open Source

X86

● Unaligned address references
– Except ESP,EBP which must be word aligned for

internal Windows API calls to work properly
● No instruction cache (post 486), register

windows, or other painful RISC idioms

Windows' Component Architecture

● No setuid programs, all privilege comes directly
from the kernel

● lsass.exe (local security authority process)
● DCE-RPC
● Impersonation

The Unix Way

Parent Daemon
running as Root

Child Daemon
Running as User

Client
Connection

File SystemOther Processes

Fork(); setuid()

Spawning Processes Under Unix

User Process Execve()

Is file setuid?

File System
Access Checks

User Process

Root Process

Read/Write/Execute
User,Group,All

Does file have
permissions bits set that
tell the kernel to
escalate the user or
group?

What comes along for the ride?

● All open file handles
– Includes special purpose device files like

/dev/kmem, /dev/mem, raw sockets etc
– Except those specifically set close-on-exec

● User ID, Group Ids
● Environment

Windows Process Spawning

Process with
User

Thread Token
CreateProcess()

File System
Access Check
against current
thread's token

If an impersonating
thread calls the
CreateProcess
function, the new
process always
inherits the
PRIMARY TOKEN
of the process

New User Process

May run in a
different context
than the thread
that spawned it, if
the process token
is different

Nobody

Process tokens can be completely
different from thread tokens

What gets carried over?

● The current “Desktop” (Shatter!)
● Current Working Directory
● Specified Environment
● Any “handles” set to be inherited (and explicitly

passed!)
● A console, if it's a console application
● Standard input and output

Handles can be:

● Open Files
● Processes
● Threads
● Mutexes
● Events
● Semaphores
● Pipes
● File Mapping object
● Buffers
● Mailslots

Child processes can not inherit
memory handles, DLL Module
handles, GDI handles, or USER
handles

Psuedohandles are also not
inheritable (such as those returned
by GetCurrentThread())

Child processes must be explicitly
passed inherited handles, via IO or
some other inter-process
communication method (RPC, for
example). This is done with the
function call “DuplicateHandle()”

Services in Win32

Service Control
Manager

Client Process

RPC
request to
start
process

Start Service as
SYSTEM

RPC request to start a
process as a USER

New Process as USERExample Service (“SU”)

CreateProcessAsUser()

Summary

● Windows by default has less exposure to
inherited resources than Unix

● Nobody understands RPC, so finding local
exploits can be difficult

● You can run a process which cannot read it's own
exe file! (Exploiting IIS dllhost.exe does this)

What's a Token

● Impersonation and Access under Windows is
infinitely complex
– ACE, DACLs, Privileges, UID, GIDs, Cloaking, etc

● A token is like a smart card that a THREAD (not
a process) can carry with it and present to the
kernel whenever access is checked
– What user I am
– What I can do as that user

● Flexibility++==Security--

The Token Stork

● Where do tokens come from?
– lsass.exe

● Or any process with similar privileges
● LogonUser() + CreateProcessAsUser

– Impersonation
● Any client on your named pipe
● Any connection to your RPC service
● ImpersonateDDEClientWindow(),

ImpersonateNamedPipeClient(), RPCImpersonateClient()

RPC Impersonation

Client
RPC Server

RPC Server
child thread

RPC
Call

Spawns a thread to handle the
request – calls
RPCImpersonateClient

Accesses file
system as user

RPC Call finished,
returns to thread
pool

When RPC Impersonation Fails

Client
RPC Server

RPC Server
child thread

RPC
Call

RPCImpersonateClient() fails, but
return code is not checked!

Accesses file
system as
SYSTEM

RPC Call finished,
returns to thread
pool

To Sum Up

● NT uses RPC in place of setuid files
– Services are not vulnerable to environment variable

and argument overflows the way setuid programs are
– RPC arguments are fair game though

● These are not well documented

● NT uses thread tokens instead of fork+setuid()
– Tokens are per-thread, not per-process
– CreateProcess() doesn't carry as many resources with

it as Unix, but it's not used for typical daemon
services

How does all this gibberish about
tokens affect my overflows?

● All those DCE-RPC services are available remotely via TCP
and/or UDP!

● Undocumented DCE-RPC services are behind everything, doing
the real work. When you find an overflow, you may be in a
completely different process than the server itself

● Lack of per-thread memory protection is an exploitation goldmine
● Focus on multi-threaded processes makes the stack completely

unreliable

– The heap is unreliable too, the only thing you can rely on is
where a process's text (code) pages are, and even that is
dependent on the program version

Finding DCE-RPC Bugs

● SPIKE

– (http://www.immunitysec.com/spike.html)
– Implements a DCE-RPC stack, with a built in fuzzer

● IDA-Pro

– Look for those NDR_ functions
● IDL files (Interface Description Language)

– Assuming you have them
● Ethereal dissectors

DCE-RPC Bugs Found With SPIKE

● Exchange 2000 “DoS”, function 0
● Exchange 2000 “DoS”, function 5
● 1 DoS on SVCHOST.EXE (port 135 TCP)

– Windows 2000-XP (NT not tested)
● mstask.exe

Like SunRPC, DCE-RPC has:

● SunRPC Program
Number (100000)

● Portmapper (port 111)
● Function numbers
● Program Versions

● UUID Service
Number
– One process can

service many
functions, also like
SunRPC

● Portmapper (port 135)
● Function numbers
● Program versions

So to directly fuzz DCE-RPC

● ./msrpcfuzz target port SERVICEUUID Version
VersionMinor FunctionNumber NumberofTries
NumberofItems

● ./Dcedump target to get ports running tcp services
● ./Ifids target port to get all the services running on

a port
● Attach with Ollydbg, write the exploits!
● Everything is Free, GPLed.

What about one of the many closed
protocols in, say, MS-SQL?

● To fuzz a closed source protocol with SPIKE,
first find a client of some kind
– ISQLW.exe, in this case

● Connect with the client and store off the network
traffic with Ethereal

● Massage the data into a SPIKE script
● Run the SPIKE script against MS-SQL, see if it

crashes
● Write the exploit

Capture Some Traffic and Convert it to a SPIKE Script

How to run the SPIKE Script

The details of the MSSQL Hello
Vulnerability

● Typical stack overflow
– Redirect EIP to 0x42ae1ec9 or 0x42ae1eb9 (jmp edi)
– Set some pointers to 0x751b8181 (a writable portion

of memory) so the program does not cause an
exception before it returns

– Program recovers cleanly after exploitation
– Executes your shellcode as LOCAL/SYSTEM on

every system I've tried it against

Shellcode (Unix Vs. Win32)

● System Calls are int 0x80 (or
similar)

– Easy to write small
shellcode that calls out to a
remote host or executes an
arbitrary command

● Dynamic libraries and
symbols are accessed via
dlopen() and dlsym()

– Very difficult to find,
involves opening
/proc/self/maps (see
grugq's paper)

● “system calls” are
interrupt driven, but take
500 arguments each, and
change every OS revision

● Dynamic libraries and
symbols are easy to find
with loadlibrary() and
getprocaddress()

– But how do you find
loadlibrary() and
getprocaddress()?

Finding LoadLibrary() and
getprocaddress()

● Assume they are at a particular place in
kernel32.dll, as mapped into the process
– Per OS version

● Assume they are imported into a known place in
a function table in the process (the Import table
for example)
– Per process version

Parse memory intelligently to find
GetProcAddress and LoadLibrary

● NSFOCUS (aspcode.c)
– Set an exception handler so bad memory reads don't

exit the shellcode
– Start at 0x77e00000 and blindly hunt to find the

Kernel32.dll page
– Parse that to find GetProcAddress()
– Call GetProcAddress() to find LoadLibraryA()

Parsing PE Headers

● Greg Hoglund's (www.rootkit.com) Buffer
Overflow Kit for Windows
– Start at 0x0040003C
– Find Import Lookup Table from that
– Loop over DLL's and compare every function in the

DLL against a hash of GetProcAddress and
LoadLibraryA

– Smallest code I've seen to do this

Virus Writer's Lessons

● http://www.builder.cz/art/asembler/anti_procdump.html

– fs:30h is pointer to PEB
● This is always the case

– *that + 0c is PEB_LDR_DATA pointer
– *that +0c is load order module list pointer

● With a list of the module bases, you can go to each PE
header, matching the names against KERNEL32.dll

● Inside Kernel32's Export Table are the pointers to the
functions you want, and their names to match against

● Search on PECOFF at MSDN site to see detailed description
of all of these structures

A brief word on encoder/decoders
● Decoders are the tiny stubs of assembly language code that

have to pass through arbitrary filters
● Decoders are typically the only parts of the shellcode that can

trigger an IDS

– Hence, many are kept secret
● Phrack Magazine's asc.c is a decoder creator that creates

printable ASCII code for arbitrary shellcode at a 12-1
expansion

● Decoders in x86 for almost any filter exist, including
Unicode strings, printable ascii strings, upper case,
lowercase, or simple “no special characters” filters

● CANVAS includes a UNICODE and Additive
encoder/decoder

Why Additive and not XOR?

● An additive encoder/decoder simply executes KEY+A where
A is every word in the encoded shellcode

● XOR cannot replace single bits – if the filter is
disallow(BYTE & 0x01) then XOR can't possibly fit

● Disadvantages of Additive

– Random guessing strategy for generating keys is much
slower than XOR key generation

– Still doesn't fit very restrictive filters

What should shellcode do?

● Shellcode cannot maintain secrecy

– Hacking in the clear is for amatures
– RSA and Key Generation is hard in ASM

● Shellcode typically is operating inside a program as a parasite

– You are holding things up
● Detach from the program quickly so it can handle other

people's requests.
– You have special tokens and handles available to you in your

memory space
– You may be unstable

● Heap, or other global variables may be trashed
● Other requests may be messing things up

Additional Win32 Weirdness

● ESP must be word aligned for some function calls
to work properly
– Socket() calls, especially

● You never know where the temp directory is
– c:\winnt\temp?
– d:\winnt\temp?
– Sometimes the current directory is not writable (by

your user token)
● Hence shellcode cannot have a hard coded place

to write a file

580 Bytes: What my shellcode does

● Calls out to a remote server
● Executes arbitrary functions on behalf of that

server
– Finds a writable directory, downloads a file to that

directory, and executes it
● Exits the current thread
● Future Projects:

– Grabbing tokens and comparing them to
Local/System or Admin!

– Repairing heaps

Demo of CANVAS MSSQL HELLO

● CANVAS is a commercial grade pure-Python
Exploitation Toolkit

● http://www.immunitysec.com/CANVAS/

Heap Overflows

● Unix heap overflows
are exploitable by
using a fake chunk to
overwrite a function
pointer

● That function pointer
is in the Global Offset
Table
– Per OS version and

program version

● Win32 heap overflows
are exploitable by
using a fake chunk to
overwrite a function
pointer

● That function pointer
is the global exception
handler
– Per OS Version

Advanced Heap Manipulation on
Win32

● Manipulating heap structures properly allows you
to write an instruction (jmp esp, for example) to
memory somewhere, then overwrite global
exception handler with that address as the target

● When the program next has an exception it will
jmp esp!

● XP actually dereferences, so you can exploit it
100% of the time by finding a pointer to your
buffer somewhere in memory that does not
change
– Try OLE's pointers, they always work for me

Back to the basics

● Let's say that a double write is not possible, how
does a heap overflow exploit typically work?

● When a heap overflow's exception occurs there is
often no register pointing to the attacking string
– Attacker fills up as much of the heap as possible with

nops and shellcode
– Attacker overwrites the global exception pointer to

point into the heap
– An exception occurs,

● and the shellcode is run
● Or the program crashes and gets restarted

IIS

Inetinfo
Dllhost.exe
Running as
IUSR

RPC
Heap Overflow in
HTR, ASP, MSADC

IWAM Token Admin Token

Overflow occurs in
thread with IWAM
token

This Admin token is sometimes sitting around

Improper cloaking
means dllhost can
impersonate system!

IIS Token Weirdness

● Because IUSR is the primary process token, and
IWAM is the current thread's token
– Files are written as IWAM
– CreateProcess() uses IUSR

● Spawned processes cannot execute or read their
own .exe

● It should be possible to hunt down the SYSTEM
token if it happens to be there, and use that
instead!

UTF-16 for Fun and Profit

● C char is often changed to wchar internally or
specifically by a programmer in Win32

● Wchar can be up to 4 times the length, but most
people only calculate for twice the length
– Values above 0x7f are represented as

0xc200ac20 (for 0xff, as an example)

Conclusion

● Understanding Windows's Security Model is
essential for proper exploitation

● DCE-RPC framework is nightmarishly complex,
which means it is full of holes

● Heap and stack overflow techniques are as
advanced on the win32 platform as on Unix
platforms

● Still many low hanging fruit in closed source
applications waiting to be found

● Questions?

CANVAS

● Price
– $995 for initial purchase, comes with 3 months of free

updates
– Additional updates are $495 for 3 months
– Enterprise Licenses Only
– Full Source Code Included (Python)

● More information
– http://www.immunitysec.com/CANVAS/

The Problem

● IS Analysts rarely know the true nature of
vulnerabilities
– Does this vulnerability affect my systems?
– What danger does this attack pose to my

configuration?
– How can I show management the true risks?
– Does my IDS/Managed Security Service really detect

this attack?

CANVAS's Solution

● Polished and Profesional Exploit Toolkit
– Completely Open Architecture

● Scriptable, modifiable, customizable

– Updated Constantly
– Focused on Your Greatest Pain

● IIS
● MS-SQL
● Coldfusion

– Python codebase ensures portability to Windows,
Unix, Mac, or anything else

CANVAS Technology

● Service Pack independent Win32 Syscall-
Redirection shellcode

● Encoder/Decoders for x86
– Unicode
– Additive

● Exploit development Python framework
– String manipulation
– Integer manipulation and unsigned integer emulation

Completed CANVAS Vulnerability
Modules

● IIS ASP Chunked Heap Overflow

● MS-SQL Server Hello Stack Overflow

● IIS MSADC Heap Overflow

● Each of these can be

– demonstrated to upper management

– scripted as an advanced vulnerability assessment tool

– used to accurately test your IDS system

– or otherwise used by your organization
● CANVAS vulnerabilities sometimes are released to CANVAS before

checks are placed into Nessus or other vulnerability scanning
mechanisms

● CANVAS modules allow you to recognize the after-affects of attack,
unlike a vulnerability scanning program

Other Immunity Products

Finds kernel trojans on Solaris 2.6-2.8
US$20,000 for a enterprise license

Locates web application
vulnerabilities. Includes
spidering, scanning, form
password brute forcing, and
overflow checks. Pure
Python. GPL.

Sophisticated C API for
analyzing arbitrary network
protocols. Includes several
examples. GPL.

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51
	Página 52
	Página 53
	Página 54
	Página 55
	Página 56

