Advanced Windows Exploitation
Dave Aitel
Immunity, Inc
http://www.immunitysec.com/

Agenda

— What 1s Immunity?

— Windows for Unix Hackers
— DCE-RPC

— Finding bugs with SPIKE
— MS-SQL

—The shellcode problem

— Heap Overtlows

— IS
— Demos, other fun

Immunity, Inc

* New York City based Corporation
* 7 Months old, privately financed

* Information Security Services

— Application focus

— Protocol Analysis

— Training

— Cutting Edge Products

* CANVAS
* BODYGUARD
* SPIKE, SPIKE Proxy

Windows for Unix Hackers

* Windows * Unix

* X86 * x86/RISC

* Component * Process architecture
Architecture e User ID

* Privilege tokens e Forked

* Threaded

* Open Source
* Closed Source

X386

* Unaligned address references

— Except ESP,EBP which must be word aligned for
internal Windows API calls to work properly

* No 1nstruction cache (post 486), register
windows, or other painful RISC 1dioms

Windows' Component Architecture

* No setuid programs, all privilege comes directly
from the kernel

* Isass.exe (local security authority process)
* DCE-RPC

* Impersonation

The Unix Way

Client
Connection

Fork(); setuid()

File System

Spawning Processes Under Unix

Read/Write/Execute
User,Group,All

Does file have
permissions bits set that
tell the kernel to
escalate the user or
group”?

What comes along for the ride?

* All open file handles

— Includes special purpose device files like
/dev/kmem, /dev/mem, raw sockets etc

— Except those specifically set close-on-exec

* User ID, Group Ids

* Environment

Windows Process Spawning

New User Process i+

May run in a
different context
than the thread
that spawned it, 1f
the process token
is different

If an impersonating
thread calls the
CreateProcess
function, the new
process always
inherits the
PRIMARY TOKEN
of the process

m

Process tokens can be completely
different from thread tokens

What gets carried over?

* The current “Desktop” (Shatter!)
* Current Working Directory
* Specified Environment

* Any “handles” set to be inherited (and explicitly
passed!)

* A console, 1f it's a console application

* Standard input and output

Handles can be:

Open Files
Processes

Threads

Mutexes

Events

Semaphores

Pipes

File Mapping object
Buffers

Mailslots

Child processes can not inherit
memory handles, DLL Module
handles, GDI handles, or USER
handles

Psuedohandles are also not
inheritable (such as those returned

by GetCurrentThread())

Child processes must be explicitly
passed inherited handles, via IO or
some other inter-process
communication method (RPC, for
example). This 1s done with the
function call “DuplicateHandle()”

RPC Services 1n Win32

request to
start
process

RPC request to start a

process as a USER CreateProcessAsUser()

Example Service (“SU”)

Summary

* Windows by default has less exposure to
inherited resources than Unix

* Nobody understands RPC, so finding local
exploits can be difficult

* You can run a process which cannot read it's own
exe file! (Exploiting IIS dllhost.exe does this)

What's a Token

* Impersonation and Access under Windows 1s
infinitely complex

- ACE, DACLs, Privileges, UID, GIDs, Cloaking, etc

* A token 1s like a smart card that a THREAD (not
a process) can carry with 1t and present to the
kernel whenever access 1s checked

— What user I am
— What I can do as that user

* Flexibility++==Security--

The Token Stork

* Where do tokens come from?

—]sass.exe

* Or any process with similar privileges

* LogonUser() + CreateProcessAsUser
— Impersonation

* Any client on your named pipe
* Any connection to your RPC service

* ImpersonateDDEClientWindow(),
ImpersonateNamedPipeClient(), RPCImpersonateClient()

RPC Impersonation

RPC

Spawns a thread to handle the
request — calls
RPCImpersonateClient

RPC Call finished,
returns to thread
Y pool

Accesses file
system as user

When RPC Impersonation Fails

RPC

RPClImpersonateClient() fails, but
return code 1s not checked!

RPC Call finished,
returns to thread
Y pool

Accesses file

system as
SYSTEM

To Sum Up

* NT uses RPC 1n place of setuid files

— Services are not vulnerable to environment variable
and argument overflows the way setuid programs are

— RPC arguments are fair game though

* These are not well documented

* NT uses thread tokens instead of fork+setuid()

— Tokens are per-thread, not per-process

— CreateProcess() doesn't carry as many resources with
it as Unix, but it's not used for typical daemon
Services

How does all this gibberish about

tokens affect my overtlows?

All those DCE-RPC services are available remotely via TCP
and/or UDP!

Undocumented DCE-RPC services are behind everything, doing
the real work. When you find an overflow, you may be in a
completely different process than the server itself

Lack of per-thread memory protection is an exploitation goldmine

Focus on multi-threaded processes makes the stack completely
unreliable

- The heap 1s unreliable too, the only thing you can rely on 1s
where a process's text (code) pages are, and even that 1s
dependent on the program version

Finding DCE-RPC Bugs

* SPIKE

= (http://www.immunitysec.com/spike.html)
— Implements a DCE-RPC stack, with a built in fuzzer

- IDA-Pro

— Look for those NDR functions
* IDL files (Interface Description Language)

— Assuming you have them

- Ethereal dissectors

DCE-RPC Bugs Found With SPIKE

Exchange 2000 “DoS”, function 0O
Exchange 2000 “DoS”, function 5

1 DoS on SVCHOST.EXE (port 135 TCP)
— Windows 2000-XP (NT not tested)

mstask.exe

Like SunRPC, DCE-RPC has:

* SunRPC Program * UUID Service
Number (100000) Number
* Portmapper (port 111) — One process can

service many

* Function numbers functions, also like

* Program Versions SunRPC
* Portmapper (port 135)

* Function numbers

* Program versions

So to directly fuzz DCE-RPC

J/msrpctuzz target port SERVICEUUID Version
VersionMinor FunctionNumber NumberofTries
Numberofltems

/Dcedump target to get ports running tcp services

/1f1ds target port to get all the services running on
a port

Attach with Ollydbg, write the exploits!
Everything 1s Free, GPLed.

What about one of the many closed
protocols 1n, say, MS-SQL?

* To fuzz a closed source protocol with SPIKE,
first find a client of some kind
- ISQLW.exe, 1n this case

* Connect with the client and store off the network
traffic with Ethereal

* Massage the data into a SPIKE script

* Run the SPIKE script against MS-SQL, see 1f 1t
crashes

* Write the exploit

Capture Some Traffic and Convert it to a SPIKE Script

00000000 12 01 00 34 00 00 00 00 Q0 00 15 00 06 01 00 1b voudeves sivnvnee
OOOOO1I0 00 01 02 00 1c 00 Oc 05 00 28 00 04 £Ff 08 00 02 L uveeees .L..]...
00000020 10 00 00 00 4d 535 53 51 4c 55 6D 72 76 BD 72 00 ., M550 Lserver,

0000020 Fe 09 00 00 | oo
- mssql.spk (~/SPIKE/N2 . 7/sicfaudits/MSSQL) - GVIM - - B X
File Edit Tools Swnta=x Buffers (Window Help
A AMSSEL L SPE
AADAVE AITEL
AAGPL w20

FASPIKE 2.6 or

= _int _wariable(0=l12,30;
= _int _wariable{O=0l,30;
= _int _variable(0=00,37;
= int _variable(0=34,30;

= binargd" OO0 00 OO0 00 Q0 o0 "
= _int _wvariable(0=xl15,.30;
= _int _variable(0=00,37;
= int _variable(O=05,30;
= _int wariable{0=0l 3);
=z _int wariable(0=00, 30 ;
= _int _wvariable(Oxlh,3);

= binarg{"0O0 01 02 00 1c Q0 Qo O3 00 28 00 Q4 FF O Q0 02"

= _int _variable(0=10,37;

=z _int wariable(0=0, 30

= _int wariable(0x0, 30

= _int _wvariable(0x0,30;

= _=tring wvariable{"MSSALServer " ;

= hinarg "0 Fo 09 00 00"Y;

"mz=gl.=pk" 25L, B4FC written 25,18 All

How to run the SPIKE Script

r 3 dave®www3.immunitysec.com: /home/dave/SPIKEN2.7/src = B X
File Edit WView Terminal Go

Couldn't tocp connect to target
Fuzzing Variable 14:9&0
Couldn't tocp connect to target
Fuzzing “Wariable 14:961
Couldn't tocp connect to target
Fuzzing “Yariable 14:9&2
Couldn't tocp connect to target
Fuzzing Yariable 14:963
Couldn't tcocp connect to target
Fuzzing Wariable 14:9&4
Couldn't tocp connect to target
Fuzzing Wariable 14:9&5
Couldn't tocp connect to target
Fuzzing Yariable 14:966
Couldn't tocp connect to target
Fuzzing “Yariable 14:9&7
Couldn't tocp connect to target
Fuzzing Wariable 14:9&8
Couldn't tcp connect to target
Fuzzing Wariable 14:9g49
Couldn't tocp connect to target
Done,

[ﬁaue@wwwE srcld LSgeneric_send_top 192,168.1.100 1433 audits-M550LA ms==ql,=spk O
0

OllyDbg - sqlservr.exe

File Wiew

Debug Plugins

Options Window Help

Bl x| »n] s HL Y +f LE|M[T|W|c|K[B|R|..|5] Z[?]

[d cpu - thread 00000938, module SSNETLIB - O] x|
Sz MOV AL, BYTE PTR_05:CEOR]

42CF72B| £945 EC MOU OWORD PTR S5: [EBP-141, EAX | Feaiziers (L) e e

42CF72E9| SB4D BC MOU ECX,DWORD PTR 55 [EEF+C] E

42CF72EC| 034D FC ADD ECH,DWORD PTR $5: [EBP-4] ELy oooneel

42CF7ZEF| 3302 WOR EDH, EDX EDM Dogcneer

45crroce| Ciez o8 SHL EBfem e ESP 2MabEr2d

$ECEroE)| adt of Fbo Eﬁﬁ:BHSEB PR 551 EBpC) EBP 2HOHEOES ASCTT “ARRRRRRARARRRRRRRRRARRRARRARAARARAARARARAARARAAAAAAARAR

p2EbnEts Wess fh Eeecll - EDI 2ASBESCC ASCIT “RAARAAARRARRAAARARARAARRARARAARAARARARARARAAARAAARAAARA

42CFraCe| bhds a2 O CL,BYTE PTR DS: (EAX+2] EIF 42CF72B4 SSNETLIE. 42CFT2E4

42CF72D4| 5995 ESFOFFFF |MOU DWORD PTR S5:[EBP-2131,EDX £ Ef foes scbiv BIEFFFREFE)

42CF720A| SBS5 EC MOV EOX,DWORD FIR S5: (EBP-14] Pl L palb 2cbiv BIEFFFRFFE)

42CF7200 5995 DBFOFFFFE | MOU DWORD PTR S5:[EEP-2301,E0H B8 =5 Bact Zobiv BIEFFFRERE)

42CF72E3| 5360 DRFOFFFF @ CHP DWORD PTR_S5:(EEP-2301, 1 2l D5 Bocs Zobiv BIFFFFEEFEL

42CF72EA|vBFS4 S2DOARRE | JE SSMETLIE. 42CF 7352 = 2 EE sl

45Cr7ore|vra BE o 2 G ST SGNETL 18, 20 7ane Do

42CF72F9| 53BD DRFOFFFF 8] CHP DWORD PTR_SG: (EBP-2381,3 0 8 LastErr ERROR_SUCCESS (28200800)

42CFromal g SE | JE SHORT SSNETUIB. 4oCF 736 EFL BO@1824¢ (MO, NE, E,BE, NS, FE, GE, LE)

42CF7307| SE45 8L MO EAX,DWORD PTR 55 [EBP+C] | s e s B

42CF730A| B35S ESFOFFFF | ADD ERX,DWORD PTR 5%i [EBP-2181 M1l goos goos pooo Booe

gl (e EAEEEE MHMS BEEE GOE0 GEEE HEEE

42CF7311| SDSD ECFOFFFF | LER ECH,DWORD PTR 55i [EBP-214] 1S ooos goos gooo Booe

sl sl ARy MHE BAGEEH GOE0 GEEE HEEE

42CF7318| E2 ASTRPOAE | CALL <JMP. &MSUCRT. stropy s goos goos gooo Baoe

42CF7310| 5304 B8 ADOD_ESP, 5 e gooy oo Dooo pooe

42CF7328| 68 QAIEDA4Z | PUSH SSMETLIE.42081EAR

42CFragt| G095 ECFOFFFF | LER EDX, DUORD PTR 553 [EBP-214) [Call stack of thread 00000938 _|ol x|

i%gg;g%% EEEEFSEBBBB EEELEégTE'&”SUCHT'“PDND} Address | Stack Procedure » arguments Called from -

42CF7334| 85CO TEST ERf, EAX

42CF7336(v T4 1F JE_SHORT SSNETLIE.42CFPaET

42CFr338| 62 BAZCDA4s | PUSH SSMETLIE. 42052060 ASCIT "MSSOLSer

42CF7330| SDES ECFOFFFF | LER ER,DWORD PTR 5%i [EBP-214]

42CF7343| 5B PUSH EAY

42CF7344| FFIS CALL DWORD PTR O5: C<&MSUCRT._stricmp>] |MSUCRT._stricnp

42CF734A| 5304 B ADD_ESF, 5

42CF7340| 85Co TEST ERY, EAX

4BCF734F V74 86 JE SHORT SSNETLIE. 42CF 7357

42CF7351| 84S F7 01 MOU BYTE_PTR S%: [EBP-91, 1

42CF7355(vEE 94 JMP SHORT SSNETLIE.42CFr3sE D@

42CF7357| 84S F7 o8 MOU BYTE PTR S%: [EBP-91,0

4PCF7ISE|vED C2BEPEAR | JMP SSNETLIE. 42CF74z2

42CF7368| 5E4D B0 HOU ECH, DWORD PTR S5: [EBP+C] -l

42CF7363| B350 ESFOFFFE | ADD ECH,DWORD PTR 5%5: [EBP-215]

12I—"|;_:E:ie' -';-'231 —L 0 1 1Y T O = = o ol]] o e e Y, N .dl

Address |Ualus ASCT) Comment a | sAEBEEFC| ZAFBESCCIASCIT ™RAAF AI

BORA3065| 25ECIECA] Leul — | EEEEL Bt

i e —N SnoEEFGE| ZASEESEE|ASCIT "AGE

o i SASEEPGC| rEpe3ade|HSUCAT, TEE
o00 SASEEri6| ZAIBET44|RSCII RAF

DBARZO1E| 19REGRES| 3 . A4 SiEn L e

EhE] CeT e il ZASBET13| 42CFT34R|SSHETLIE.

LR EaRe e e SASEEriC| ZASBET44|ASCII “AAF
e ZNSEErZa| 4zDozCoal RECIT HES

DBARSOZE| DEAEDEER | Jelaccos

DBARZOZ4 | DEAEDEER| | . . RN oo

DBARZOZE| DEAEDEES| . . . ehiaaie s con o

DBRARZOZE | DERETFFF| A, . ZhopETZC 2oaooand

poracasy| paaaanid) B SASBETZ4| 19398433|ASCII "io”

e BASEEr3E| ZASBESAS o

DBARZO3E| DEAEDEE | | . . . e i

DBARZO3E | DEAEDEER| e [

DBARZ04E| DEAEDERD | | . . . SiEn IR ekt =

ppaacadd| anaeaalE ;. e IR

Acceszs violation when reading [32828237] - use Shift+F7/F3/F3 to pazs exception to program

| Paused

The details of the MSSQL Hello
Vulnerability

* Typical stack overflow

— Redirect EIP to 0x42aelec9 or 0x42aeleb9 (jmp edi)

— Set some pointers to 0x751b8181 (a writable portion
of memory) so the program does not cause an
exception before it returns

— Program recovers cleanly after exploitation

— Executes your shellcode as LOCAL/SYSTEM on
every system I've tried it against

Shellcode (Unix Vs. Win32)

System Calls are it 0x80 (or - “system calls” are

similar) interrupt driven, but take
- Easy to write small 500 arguments each, and

shellcode that calls out to a change every OS revision
remote host or executes an

arbitrary command * Dynamic libraries and
Dynamic libraries and Sy,mbOls a%‘e easy to find
symbols are accessed via with loadlibrary() and
dlopen() and dlsym() getprocaddress()
- Very difficult to find, — But how do you find
involves opening loadlibrary() and
/proc/self/maps (see getprocaddress()?

grugq's paper)

Finding LoadLibrary() and
getprocaddress()

* Assume they are at a particular place in
kernel32.dll, as mapped into the process

— Per OS version

* Assume they are imported 1nto a known place 1n
a function table 1n the process (the Import table
for example)

— Per process version

Parse memory intelligently to find
GetProcAddress and LoadLibrary

* NSFOCUS (aspcode.c)

— Set an exception handler so bad memory reads don't
exit the shellcode

— Start at 0x77e¢00000 and blindly hunt to find the
Kernel32.dll page

— Parse that to find GetProcAddress()
— Call GetProcAddress() to find LoadLibraryA()

Parsing PE Headers

* Greg Hoglund's (www.rootkit.com) Buffer
Overtlow Kit for Windows

— Start at 0x0040003C
— Find Import Lookup Table from that

— Loop over DLL's and compare every function in the
DLL against a hash of GetProcAddress and
LoadLibraryA

— Smallest code I've seen to do this

Virus Writer's Lessons

* http://www.builder.cz/art/asembler/anti procdump.html
- 15:30h 1s pointer to PEB

® This 1s always the case
- *that + Oc 1s PEB_LDR DATA pointer

- *that +0c 1s load order module list pointer

* With a list of the module bases, you can go to each PE
header, matching the names against KERNEL32.dll

- Inside Kernel32's Export Table are the pointers to the

functions you want, and their names to match against

Search on PECOFF at MSDN site to see detailed description
of all of these structures

A briet word on encoder/decoders

* Decoders are the tiny stubs of assembly language code that
have to pass through arbitrary filters

* Decoders are typically the only parts of the shellcode that can
trigger an IDS

- Hence, many are kept secret

* Phrack Magazine's asc.c 1s a decoder creator that creates

printable ASCII code for arbitrary shellcode at a 12-1
expansion

* Decoders in x86 for almost any filter exist, including
Unicode strings, printable ascii strings, upper case,
lowercase, or simple “no special characters” filters

CANVAS includes a UNICODE and Additive
encoder/decoder

Why Additive and not XOR?

* An additive encoder/decoder simply executes KEY+A where
A 1s every word 1n the encoded shellcode

* XOR cannot replace single bits — if the filter 1s
disallow(BYTE & 0x01) then XOR can't possibly fit

* Disadvantages of Additive

— Random guessing strategy for generating keys 1s much
slower than XOR key generation

— Still doesn't fit very restrictive filters

What should shellcode do?

Shellcode cannot maintain secrecy

- Hacking 1n the clear 1s for amatures
- RSA and Key Generation 1s hard in ASM

Shellcode typically is operating inside a program as a parasite

- You are holding things up

* Detach from the program quickly so it can handle other
people's requests.

- You have special tokens and handles available to you in your
memory space

- You may be unstable

* Heap, or other global variables may be trashed

* Other requests may be messing things up

Additional Win32 Weirdness

* ESP must be word aligned for some function calls
to work properly

— Socket() calls, especially
* You never know where the temp directory 1s
— c:\winnt\temp?

- d:\winnt\temp?

— Sometimes the current directory 1s not writable (by
your user token)

* Hence shellcode cannot have a hard coded place
to write a file

580 Bytes: What my shellcode does

Calls out to a remote server

Executes arbitrary functions on behalf of that
server

— Finds a writable directory, downloads a file to that
directory, and executes it

Exits the current thread

Future Projects:

— Grabbing tokens and comparing them to
Local/System or Admin!

— Repairing heaps

Demo of CANVAS MSSQL HELLO

* CANVAS 1s a commercial grade pure-Python
Exploitation Toolkat

* http://www.immunitysec.com/CANVAS/

Heap Overtlows

* Unix heap overflows * Win32 heap overtlows

are exploitable by are exploitable by
using a fake chunk to using a fake chunk to
overwrite a function overwrite a function
pointer pointer

* That function pointer * That function pointer
is 1n the Global Offset 1s the global exception
Table handler

— Per OS version and — Per OS Version
program version

Advanced Heap Manipulation on
Win32

* Manipulating heap structures properly allows you
to write an instruction (Jmp esp, for example) to
memory somewhere, then overwrite global
exception handler with that address as the target

* When the program next has an exception 1t will
jmp esp!

* XP actually dereferences, so you can exploit it
100% of the time by finding a pointer to your

buffer somewhere 1n memory that does not
change

— Try OLE's pointers, they always work for me

Back to the basics

* Let's say that a double write 1s not possible, how
does a heap overtlow exploit typically work?

* When a heap overflow's exception occurs there 1s
often no register pointing to the attacking string

— Attacker fills up as much of the heap as possible with
nops and shellcode

— Attacker overwrites the global exception pointer to
point into the heap

— An exception occurs,

* and the shellcode 1s run

* Or the program crashes and gets restarted

LIS

Heap Overflow 1n
HTR, ASP, MSADC

RPC

Improper cloaking
means dllhost can

impersonate system! This Admin token 1s sometimes sitting around

Overflow occurs in
thread with IWAM
token

IIS Token Weirdness

* Because IUSR 1s the primary process token, and
IWAM 1s the current thread's token
- Files are written as IWAM
— CreateProcess() uses IUSR

* Spawned processes cannot execute or read their
own .€Xxe

* It should be possible to hunt down the SYSTEM
token 1f 1t happens to be there, and use that
instead!

UTF-16 for Fun and Profit

* C char 1s often changed to wchar internally or
specifically by a programmer in Win32

* Wchar can be up to 4 times the length, but most
people only calculate for twice the length

— Values above 0x71 are represented as
0xc200ac20 (for Oxff, as an example)

Conclusion

* Understanding Windows's Security Model 1s
essential for proper exploitation

* DCE-RPC framework 1s nightmarishly complex,
which means it 1s full of holes

* Heap and stack overflow techniques are as
advanced on the win32 platform as on Unix
platforms

* Still many low hanging fruit in closed source
applications waiting to be found

* Questions?

Immunity

Products

FOR MORE INFORMATION CONMTACT: DAH‘E@IMMUNITTSEE.CDH

COFYRIGCHT 2002 - IMMUNITY SECURITY, INC. (N Y C)

ILLUSTRATE TRUE RISK

CANVAS

* Price

- $995 for initial purchase, comes with 3 months of free
updates

— Additional updates are $495 for 3 months

— Enterprise Licenses Only
— Full Source Code Included (Python)

* More information

— http://www.immunitysec.com/CANVAS/

The Problem

* IS Analysts rarely know the true nature of
vulnerabilities

— Does this vulnerability affect my systems?

— What danger does this attack pose to my
configuration?

— How can I show management the true risks?

— Does my IDS/Managed Security Service really detect
this attack?

CANVAS's Solution

* Polished and Profesional Exploit Toolkit
— Completely Open Architecture

* Scriptable, modifiable, customizable

— Updated Constantly

— Focused on Your Greatest Pain

e IS
* MS-SQL
* Coldfusion

— Python codebase ensures portability to Windows,
Unix, Mac, or anything else

CANVAS Technology

* Service Pack independent Win32 Syscall-
Redirection shellcode

* Encoder/Decoders for x86
— Unicode
— Additive
* Exploit development Python framework

— String manipulation

— Integer manipulation and unsigned integer emulation

Completed CANVAS Vulnerability
Modules

IIS ASP Chunked Heap Overflow
MS-SQL Server Hello Stack Overflow
IIS MSADC Heap Overflow

Each of these can be

— demonstrated to upper management

— scripted as an advanced vulnerability assessment tool
— used to accurately test your IDS system

— or otherwise used by your organization

CANVAS vulnerabilities sometimes are released to CANVAS before
checks are placed into Nessus or other vulnerability scanning
mechanisms

CANVAS modules allow you to recognize the after-affects of attack,
unlike a vulnerability scanning program

Immunity

Products

FOR MORE INFORMATION CONTACT: DAH’E@IMMUNITTSEE.CDH

COPYRIGHT 2002 - IMMUNITY SECURITY, INC. (NY C)

Other Immunity Products

BeE RE

KernNEL VERIFIER

5 l:l l léﬂ&‘(
Locates web application
vulnerabilities. Includes
spidering, scanning, form
password brute forcing, and
overflow checks. Pure

Python. GPL.

Finds kernel trojans on Solaris 2.6-2.8
US$20,000 for a enterprise license

Sophisticated C API for
analyzing arbitrary network

protocols. Includes several
examples. GPL.

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51
	Página 52
	Página 53
	Página 54
	Página 55
	Página 56

