
The Art of Unpacking 1

The Art of Unpacking

Mark Vincent Yason
Malcode Analyst, X-Force Research & Development

IBM Internet Security Systems

Abstract: Unpacking is an art—it is a mental challenge and is one of the most exciting mind

games in the reverse engineering field. In some cases, the reverser needs to know the

internals of the operating system in order to identify or solve very difficult anti-reversing tricks

employed by packers/protectors, patience and cleverness are also major factors in a

successful unpack. This challenge involves researchers creating the packers and on the other

side, the researchers that are determined to bypass these protections.

The main purpose of this paper is to present anti-reversing techniques employed by

executable packers/protectors and also discusses techniques and publicly available tools that

can be used to bypass or disable this protections. This information will allow researchers,

especially, malcode analysts to identify these techniques when utilized by packed malicious

code, and then be able decide the next move when these anti-reversing techniques impede

successful analysis. As a secondary purpose, the information presented can also be used by

researchers that are planning to add some level of protection in their software by slowing

down reversers from analyzing their protected code, but of course, nothing will stop a skilled,

informed, and determined reverser.

Keywords: reverse engineering, packers, protectors, anti-debugging, anti-reversing

Revision 4.0

The Art of Unpacking 2

Table of Contents

Page
Table of Contents...2

1. INTRODUCTION...3
2. TECHNIQUES: DEBUGGER DETECTION ...4

2.1. PEB.BeingDebugged Flag: IsDebuggerPresent() ..4
2.2. PEB.NtGlobalFlag, Heap Flags ...5

2.3. DebugPort: CheckRemoteDebuggerPresent() / NtQueryInformationProcess()........................6
2.4. Debugger Interrupts ..7

2.5. Timing Checks ..8
2.6. SeDebugPrivilege ..9

2.7. Parent Process .. 10
2.8. DebugObject: NtQueryObject() ... 11

2.9. Debugger Window ... 12
2.10. Debugger Process ... 12

2.11. Device Drivers .. 12
2.12. OllyDbg: Guard Pages.. 13

3. TECHNIQUES: BREAKPOINT AND PATCHING DETECTION.. 14
3.1. Software Breakpoint Detection .. 14

3.2. Hardware Breakpoint Detection ... 15
3.3. Patching Detection via Code Checksum Calculation.. 16

4. TECHNIQUES: ANTI-ANALYSIS .. 17

4.1. Encryption and Compression... 17
4.2. Garbage Code and Code Permutation... 18

4.3. Anti-Disassembly .. 20
5. TECHNIQUES : DEBUGGER ATTACKS ... 22

5.1. Misdirection and Stopping Execution via Exceptions ... 22
5.2. Blocking Input .. 23

5.3. ThreadHideFromDebugger .. 24
5.4. Disabling Breakpoints .. 25

5.5. Unhandled Exception Filter ... 26
5.6. OllyDbg: OutputDebugString() Format String Bug ... 26

6. TECHNIQUES : ADVANCED AND OTHER TECHNIQUES .. 27
6.1. Process Injection... 27

6.2. Debugger Blocker.. 28
6.3. TLS Callbacks ... 29

6.4. Stolen Bytes ... 30
6.5. API Redirection ... 31

6.6. Multi-Threaded Packers.. 32
6.7. Virtual Machines.. 32

7. TOOLS ... 34
7.1. OllyDbg.. 34

7.2. Ollyscript.. 34
7.3. Olly Advanced... 34

7.4. OllyDump ... 34
7.5. ImpRec .. 34

8. REFERENCES... 35

The Art of Unpacking 3

1. INTRODUCTION

In the reverse engineering field, packers are one of the most interesting puzzles to solve. In

the process of solving these puzzles, the reverser gains more knowledge about a lot of things

such operating system internals, reversing tricks, tools and techniques.

Packers (the term used in this paper for both compressors and protectors) are created to

protect an executable from analysis. They are used legitimately by commercial applications to

prevent information disclosure, tampering and piracy. Unfortunately, malcodes also use

packers for the same reasons but for a malicious purpose.

Due to a large number of packed malcode, researchers and malcode analysts started to

develop the skills to unpack samples for analysis. However, as time goes by, new anti-

reversing techniques are constantly added into packers to prevent reversers from analyzing

the protected executable and preventing a successful unpack. And the cycle goes on - new

anti-reversing techniques are developed while reversers on the other side of the fence develop

the skills, techniques, and tools to defeat them.

The main focus of this paper is to present anti-reversing techniques employed by packers,

tools and techniques on how to bypass/disable these protections are also discussed.

Conversely, some packers can easily be bypassed by process dumping and thus, dealing with

anti-reversing techniques seems unnecessary. However, there are instances where the

protector code needed to be traced and analyzed, such as:

• Parts of the protector code needed to be bypassed in order for a process dumping

and import table rebuilding tool to properly work

• In-depth analysis of a protector code in order to integrate unpacking support into

an AV product

Additionally, understanding anti-reversing techniques is also valuable in cases where they are

directly applied to a malcode in order prevent tracing and analysis of their malicious routines.

This paper is by no means contain a complete list of anti-reversing techniques as it only

covers the commonly used and interesting techniques found in packers. The reader is advised

to refer to the last section which contains links and books information to learn more about

other anti-reversing and reversing techniques.

The author hopes that the reader found this material useful and able to apply the tips, tricks

and techniques presented. Happy Unpacking!

The Art of Unpacking 4

2. TECHNIQUES: DEBUGGER DETECTION

This section lists the techniques used by packers to determine if the process is being

debugged, or if a debugger is running in the system. These debugger detection techniques

range from the very simple (and obvious) checks to the one that deals with native APIs and

kernel objects.

2.1. PEB.BeingDebugged Flag: IsDebuggerPresent()

The most basic debugger detection technique involves checking the BeingDebugged flag in the

Process Environment Block (PEB) 1. The kernel32!IsDebuggerPresent() API checks the value of

this flag to identify if the process is being debugged by a user-mode debugger.

The code below shows the actual implementation of the IsDebuggerPresent() API. It accesses

the Thread Environment Block (TEB)2 in order to get the address of PEB, and then checks the

BeingDebugged flag at offset 0x02 of the PEB.

mov eax, large fs:18h
mov eax, [eax+30h]
movzx eax, byte ptr [eax+2]
retn

Instead of calling IsDebuggerPresent(), some packers manually checks the PEB for the

BeingDebugged flag, this is in case a reverser sets a breakpoint or patch the said API.

Example

Below is an example code for identifying if a debugger is present using the

IsDebuggerPresent() API and the PEB.BeingDebugged flag:

 ; call kernel32!IsDebuggerPresent()
 call [IsDebuggerPresent]
 test eax,eax
 jnz .debugger_found

 ; check PEB.BeingDebugged directly
 mov eax,dword [fs:0x30] ;EAX = TEB.ProcessEnvironmentBlock
 movzx eax,byte [eax+0x02] ;AL = PEB.BeingDebugged
 test eax,eax
 jnz .debugger_found

Since these checks are very obvious, packers obfuscate them by using garbage codes or anti-

disassembly techniques discussed in later sections.

Solution

This technique can be easily bypassed by manually patching the PEB.BeingDebugged flag with

the byte value of 0x00. To view the PEB in OllyDbg, in the data window, press Ctrl+G (Goto

Expression), type fs:[30].

Additionally, the Ollyscript3 command “dbh” patches the said byte:

 dbh

Finally, the Olly Advanced3 plugin has on option to set the BeingDebugged field to 0.

1 Data type of the PEB structure is _PEB which can be viewed in WinDbg using the dt command
2 Data type of the TEB structure is _TEB
3 See the TOOLS section for more information about these tools

The Art of Unpacking 5

2.2. PEB.NtGlobalFlag, Heap Flags

PEB.NtGlobalFlag. The PEB has another field called NtGlobalFlag (offset 0x68) which packers

also use to detect if a program had been loaded by a debugger. Normally, when a process is

not being debugged, the NtGlobalFlag field contains the value 0x0, however, if the process is

being debugged, the said field will usually contain the value 0x70 which signifies the following

flags are set:

• FLG_HEAP_ENABLE_TAIL_CHECK (0x10)

• FLG_HEAP_ENABLE_FREE_CHECK (0x20)

• FLG_HEAP_VALIDATE_PARAMETERS (0x40)

These flag are set inside the ntdll!LdrpInitializeExecutionOptions(). Note that the default value

of PEB.NtGlobalFlag can be overridden using the gflags.exe tool or by creating an entry in the

following registry key:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options

Heap Flags. Due to the flags set in NtGlobalFlag, heaps that are created will have several flags

turned on, and that this behavior can be observed inside ntdll!RtlCreateHeap(). Typically, the

initial heap created for the process (PEB.ProcessHeap) will have its Flags and ForceFlags fields4

set to 0x02 (HEAP_GROWABLE) and 0x0 respectively. However, when a process is being

debugged, these flags are usually set to 0x50000062 (depending on the NtGlobalFlag) and

0x40000060 (which is Flags AND 0x6001007D). By default, the following additional heap flags

are set when a heap is created on a debugged process:

• HEAP_TAIL_CHECKING_ENABLED (0x20)

• HEAP_FREE_CHECKING_ENABLED (0x40)

Example

The example code below checks if PEB.NtGlobalFlag is not equal to 0, and if additional flags

are set PEB.ProcessHeap:

 ;ebx = PEB
 mov ebx,[fs:0x30]

 ;Check if PEB.NtGlobalFlag != 0
 cmp dword [ebx+0x68],0
 jne .debugger_found

 ;eax = PEB.ProcessHeap
 mov eax,[ebx+0x18]

 ;Check PEB.ProcessHeap.Flags
 cmp dword [eax+0x0c],2
 jne .debugger_found

 ;Check PEB.ProcessHeap.ForceFlags
 cmp dword [eax+0x10],0
 jne .debugger_found

Solution

The solution is to patch PEB.NtGlobalFlag and PEB.HeapProcess flags to their corresponding

values as if the process is not being debugged. The following is an example ollyscript to patch

the said flags:

 var peb
 var patch_addr

4 Data type for the heap structure is _HEAP

The Art of Unpacking 6

 var process_heap

 //retrieve PEB via a hardcoded TEB address (first thread: 0x7ffde000)
 mov peb,[7ffde000+30]

 //patch PEB.NtGlobalFlag
 lea patch_addr,[peb+68]
 mov [patch_addr],0

 //patch PEB.ProcessHeap.Flags/ForceFlags
 mov process_heap,[peb+18]
 lea patch_addr,[process_heap+0c]
 mov [patch_addr],2
 lea patch_addr,[process_heap+10]
 mov [patch_addr],0

Also, the Olly Advanced plugin has on option to set PEB.NtGlobalFlags and the

PEB.ProcessHeap flags.

2.3. DebugPort: CheckRemoteDebuggerPresent() / NtQueryInformationProcess()

Kernel32!CheckRemoteDebuggerPresent() is another API which can be used to determine if a

debugger is attached to the process. This API internally invokes ntdll!

NtQueryInformationProcess() with the ProcessInformationClass parameter set to

ProcessDebugPort (7). Furthermore, inside the kernel, NtQueryInformationProcess() queries

the DebugPort field of the EPROCESS5 kernel structure. A non-zero value in the DebugPort

field indicates that the process is being debugged by user-mode debugger, if that is the case,

ProcessInformation will be set with the value 0xFFFFFFFF, otherwise, ProcessInformation will

be set with the value 0x0.

Kernel32!CheckRemoteDebuggerPresent() accepts 2 parameters, the first parameter is the

process handle and the second parameter is a pointer to a boolean variable that will contain a

TRUE value if the process is being debugged.

BOOL CheckRemoteDebuggerPresent(
 HANDLE hProcess,
 PBOOL pbDebuggerPresent
)

Ntdll!NtQueryInformationProcess() on the other hand, have 5 parameters. For the purpose of

detecting a debugger, the ProcessInformationClass is set to ProcessDebugPort (7):

NTSTATUS NTAPI NtQueryInformationProcess(
 HANDLE ProcessHandle,
 PROCESSINFOCLASS ProcessInformationClass,
 PVOID ProcessInformation,
 ULONG ProcessInformationLength,
 PULONG ReturnLength
)

Example

The example below shows a typical call to CheckRemoteDebuggerPresent() and

NtQueryInformationProcess () to detect if the current process is being debugged:

 ; using kernel32!CheckRemoteDebuggerPresent()
 lea eax,[.bDebuggerPresent]
 push eax ;pbDebuggerPresent
 push 0xffffffff ;hProcess
 call [CheckRemoteDebuggerPresent]
 cmp dword [.bDebuggerPresent],0

5 Data type of the EPROCESS structure is _EPROCESS

The Art of Unpacking 7

 jne .debugger_found

 ; using ntdll!NtQueryInformationProcess(ProcessDebugPort)
 lea eax,[.dwReturnLen]
 push eax ;ReturnLength
 push 4 ;ProcessInformationLength
 lea eax,[.dwDebugPort]
 push eax ;ProcessInformation
 push ProcessDebugPort ;ProcessInformationClass (7)
 push 0xffffffff ;ProcessHandle
 call [NtQueryInformationProcess]
 cmp dword [.dwDebugPort],0
 jne .debugger_found

Solution

One solution involves setting a breakpoint where NtQueryInformationProcess() returns, then

when the breakpoint is hit, ProcessInformation is patched with a DWORD value 0. An example

ollyscript to perform this automatically is shown below:

 var bp_NtQueryInformationProcess

 // set a breakpoint handler
 eob bp_handler_NtQueryInformationProcess

 // set a breakpoint where NtQueryInformationProcess returns
 gpa "NtQueryInformationProcess", "ntdll.dll"
 find $RESULT, #C21400# //retn 14
 mov bp_NtQueryInformationProcess,$RESULT
 bphws bp_NtQueryInformationProcess,"x"
 run

bp_handler_NtQueryInformationProcess:
 //ProcessInformationClass == ProcessDebugPort?
 cmp [esp+8], 7
 jne bp_handler_NtQueryInformationProcess_continue

 //patch ProcessInformation to 0
 mov patch_addr, [esp+c]
 mov [patch_addr], 0

 //clear breakpoint
 bphwc bp_NtQueryInformationProcess

bp_handler_NtQueryInformationProcess_continue:
 run

The Olly Advanced plugin has an option to patch NtQueryInformationProcess(). The patch

involves injecting a code that will manipulate the return value of NtQueryInformationProcess().

2.4. Debugger Interrupts

This technique uses the fact that when the interrupt instructions INT3 (breakpoint) and INT1

(single-step) are stepped thru inside a debugger, by default, the exception handler will not be

invoked since debuggers typically handle the exceptions generated by these interrupts. Thus,

a packer can set flags inside the exception handler, and if these flags are not set after the INT

instruction, it means that the process is being debugged. Additionally, kernel32!DebugBreak()

internally invokes an INT3 and some packers use the said API instead.

Example

This example sets the value of EAX to 0xFFFFFFFF (via the CONTEXT6 record) while inside

exception handler to signify that the exception handler had been called:

6 A context record contains the state of a thread; its data type is _CONTEXT. The context record passed to
the exception handler is the current state of the thread that thrown the exception

The Art of Unpacking 8

 ;set exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp

 ;reset flag (EAX) invoke int3
 xor eax,eax
 int3

 ;restore exception handler
 pop dword [fs:0]
 add esp,4

 ;check if the flag had been set
 test eax,eax
 je .debugger_found

 :::

.exception_handler:
 ;EAX = ContextRecord
 mov eax,[esp+0xc]
 ;set flag (ContextRecord.EAX)
 mov dword [eax+0xb0],0xffffffff
 ;set ContextRecord.EIP
 inc dword [eax+0xb8]
 xor eax,eax
 retn

Solution

In OllyDbg, while stepping thru or execution had stopped due to a debugger interrupt, identify

the exception handler address (via View -> SEH Chain) and then set a breakpoint on the

exception handler. Then, press Shift+F9 so that the single-step/breakpoint exception

generated by these interrupts is passed to the exception handler. The breakpoint will

eventually be hit and the exception handler

can be traced.

Another solution is to allow single-

step/breakpoint exceptions to be

automatically passed to the exception

handler. This can be set in OllyDbg via

Options -> Debugging Options -> Exceptions

-> “Ignore following exceptions” and then

check the “INT 3 breaks” and “Single-step

break” check boxes.

2.5. Timing Checks

When a process is being debugged, several CPU cycles are spent by the debugger event

handling code, a reverser stepping thru the instructions, etc. Packers takes advantage of this

by determining the time spent between several instructions, if the time spent took longer

compared to a normal run, it probably means that the process is being executed under a

debugger.

Example

Below is a simple example of a timing check. It uses the RDTSC (Read Time-Stamp Counter)

instruction before and after several instructions, and then computes the delta. The delta value

of 0x200 depends on how much code is executed between the two RDTSC instructions.

 rdtsc
 mov ecx,eax
 mov ebx,edx

The Art of Unpacking 9

 ;... more instructions
 nop
 push eax
 pop eax
 nop
 ;... more instructions

 ;compute delta between RDTSC instructions
 rdtsc

 ;Check high order bits
 cmp edx,ebx
 ja .debugger_found
 ;Check low order bits
 sub eax,ecx
 cmp eax,0x200
 ja .debugger_found

Variations of timing checks includes using the API kernel32!GetTickCount(), or manually

checking the value of the TickCountLow and TickCountMultiplier fields of the SharedUserData7

data structure which is always located at the address 0xc.

These timing techniques, specially using RDTSC can be difficult to identify if garbage codes

and other obfuscation techniques attempts to hide them.

Solution

One solution would be to identify where the timing checks are and then avoiding stepping thru

code in between these timing checks. The reverser can just set a breakpoint just before the

delta comparison and then perform a Run instead of a Step until the breakpoint is hit.

Additionally, a breakpoint can be set in GetTickCount() to determine where it had been called

or to modify its return value.

Olly Advanced has another solution - It installs a kernel mode driver that does the following:

1. Sets that Time Stamp Disable Bit (TSD) in control register CR48. When the said bit

is set and if the RDTSC instruction is executed in a privilege level other than 0, a

General Protection (GP) exception will be triggered.

2. The Interrupt Descriptor Table (IDT) is set up so that the GP exception is hooked

and execution of RTDSC is filtered. If the GP is because of an RDTSC instruction,

just increment the returned timestamp from the previous call by 1.

It should be noted that the discussed driver may cause instability to the system, thus,

experimenting with this feature should always be done on a non-production machine or in a

virtual machine.

2.6. SeDebugPrivilege

By default, a process has the SeDebugPrivilege privilege in their access token disabled.

However, when the process is loaded by a debugger such as OllyDbg and WinDbg, the

SeDebugPrivilege privilege is enabled. This is the case since these debuggers attempt to

adjust their token to enable the said privilege and when the debugged process is loaded, the

SeDebugPrivilege privilege is inherited.

Some packers indirectly use SeDebugPrivilege to identify if the process is being debugged by

attempting to open the CSRSS.EXE process. If a process is able to open the CSRSS.EXE

7 Data type of SharedUserData is _KUSER_SHARED_DATA
8 See “Control Registers” in IA-32 Intel® Architecture Software Developer's Manual Volume 3A: System
Programming Guide, Part 1

The Art of Unpacking 10

process; it means that the process has the SeDebugPrivilege privilege enabled in the access

token, and thus, suggesting that the process is being debugged. This check works because the

security descriptor of the CSRSS.EXE process only allows SYSTEM to access the said process,

but if a process has the SeDebugPrivilege privilege; it can access another process regardless

of the security descriptor 9. Note that this privilege is only granted to members of the

Administrators group by default.

Example

An example check is shown below:

 ;query for the PID of CSRSS.EXE
 call [CsrGetProcessId]

 ;try to open the CSRSS.EXE process
 push eax
 push FALSE
 push PROCESS_QUERY_INFORMATION
 call [OpenProcess]

 ;if OpenProcess() was successful,
 ; process is probably being debugged
 test eax,eax
 jnz .debugger_found

This check uses the API ntdll!CsrGetProcessId() to retrieve the PID of CSRSS.EXE, but packers

may obtain the PID of CSRSS.EXE manually via process enumeration. If OpenProcess()

succeeds, it means that SeDebugPrivilege is enabled which also means that the process is

possibly being debugged.

Solution

One solution is to set a breakpoint where ntdll!NtOpenProcess() returns, once the breakpoint

is hit, set the value of EAX to 0xC0000022 (STATUS_ACCESS_DENIED) if the passed PID is

that of CSRSS.EXE.

2.7. Parent Process

Typically, a process has explorer.exe as its parent process (eg: executable is double-clicked);

a parent process other than explorer.exe suggests that an application is spawned by a

different application and thus suggests that it is possibly being debugged.

One way to implement this check is as follows:

1. Retrieve the current process’ PID via the TEB (TEB.ClientId) or using

GetCurrentProcessId()

2. List all processes using Process32First/Next() and take note of explorer.exe’s PID

(via PROCESSENTRY32.szExeFile) and the PID of the parent process of the current

process via PROCESSENTRY32.th32ParentProcessID

3. If the PID of the parent process is not the PID of explorer.exe, the target is

possibly being debugged.

However, note that this debugger check will trigger a false positive if the executable is being

executed via the command prompt or the default shell is different.

Solution

A solution provided by Olly Advanced is to set Process32Next() to always fail, this way, the

packer’s process enumeration code will fail and possibly skip the PID checks due to process

9 See OpenProcess() API in MSDN: http://msdn2.microsoft.com/en-us/library/ms684320.aspx

The Art of Unpacking 11

enumeration failure. This is done by patching the entry of kernel32!Process32NextW() with a

code the sets the value of EAX to 0 and then perform a return:

2.8. DebugObject: NtQueryObject()

Instead of identifying if the process is being debugged, other techniques involve checking if a

debugger is running in the system.

One interesting method discussed in reversing forums is by checking the number of kernel

objects of type DebugObject 10 . This works because every time an application is being

debugged, in the kernel, an object of type DebugObject is created for the debugging session.

The number of DebugObject can be obtained by querying information about all object types

using ntdll!NtQueryObject(). NtQueryObject accepts 5 parameters, and for the purpose of

querying all objects types, the ObjectHandle parameter is set to NULL and

ObjectInformationClass is to ObjectAllTypeInformation (3):

NTSTATUS NTAPI NtQueryObject(
 HANDLE ObjectHandle,
 OBJECT_INFORMATION_CLASS ObjectInformationClass,
 PVOID ObjectInformation,
 ULONG Length,
 PULONG ResultLength
)

The said API returns an OBJECT_ALL_INFORMATION structure, in which the

NumberOfObjectsTypes field is the count of total object types in the ObjectTypeInformation

array:

typedef struct _OBJECT_ALL_INFORMATION {
 ULONG NumberOfObjectsTypes;
 OBJECT_TYPE_INFORMATION ObjectTypeInformation[1];
}

The detection routine will then iterate thru the ObjectTypeInformation array which has the

following structure:

typedef struct _OBJECT_TYPE_INFORMATION {
 [00] UNICODE_STRING TypeName;
 [08] ULONG TotalNumberOfHandles;
 [0C] ULONG TotalNumberOfObjects;
 ... more fields ...
}

The TypeName field is then compared to the UNICODE string “DebugObject”, and then the

TotalNumberOfObjects or the TotalNumberOfHandles field is checked for a non-zero value.

Solution

Similar to the NtQueryInformationProcess() solution, a breakpoint can be set where

NtQueryObject() returns. Then, the returned OBJECT_ALL_INFORMATION structure can be

patched. Specifically, the NumberOfbjectsTypes field can be set to 0 to prevent packers from

iterating thru the ObjectTypeInformation array. A similar ollyscript from the

NtQueryInformationProcess() solution can be created to perform this via a script.

10

 More information about DebugObject can be found on the Windows Native Debugging Internals articles

by Alex Ionescu on http://www.openrce.org/articles/full_view/25 and
http://www.openrce.org/articles/full_view/26

The Art of Unpacking 12

Similarly, the Olly advanced plugin injects code in the NtQueryObject() API which will zero out

the entire returned buffer if the query is of type ObjectAllTypeInformation.

2.9. Debugger Window

The existence of debugger windows are identifying marks that a debugger is running in the

system. Since debuggers create windows with specific class names (OLLYDBG for OllyDbg,

WinDbgFrameClass for WinDbg), these debugger windows are easily identified using

user32!FindWindow() or user32!FindWindowEx().

Example

The example code below uses FindWindow() to identify if OllyDbg or WinDbg is running in the

system via the windows they create:

 push NULL
 push .szWindowClassOllyDbg
 call [FindWindowA]
 test eax,eax
 jnz .debugger_found

 push NULL
 push .szWindowClassWinDbg
 call [FindWindowA]
 test eax,eax
 jnz .debugger_found

.szWindowClassOllyDbg db "OLLYDBG",0
.szWindowClassWinDbg db "WinDbgFrameClass",0

Solution

One solution is to set a breakpoint in the entry of FindWindow()/FindWindowEx(). When the

breakpoint is hit, change the contents of the lpClassName string parameter so that the API will

fail. Other solution involves just setting the return value to NULL.

2.10. Debugger Process

Another way to identify if a debugger is running in the system is to list all process and check if

the process name is that of a debugger (e.g. OLLYDBG.EXE, windbg.exe, etc.) The

implementation is straight forward and just involves using Process32First/Next() and then

checking if the image name is that of a debugger.

Some packers also go as far as reading a process’ memory using

kernel32!ReadProcessMemory() and then search for debugger-related strings (e.g.

“OLLYDBG”) in case the reverser renames the debugger’s executable. Once a debugger is

found, the packer may display an error message, silently exit or terminate the debugger.

Solution

Similar to the solution for the parent process check, the solution involves patching

kernel32!Process32NextW() to always fail to prevent the packer from enumerating the

processes.

2.11. Device Drivers

A classic technique for detecting if a kernel mode debugger is active in the system is to try

accessing their device drivers. The technique is fairly simple and just involves calling

kernel32!CreateFile() against well-known device names used by kernel mode debuggers such

as SoftICE.

The Art of Unpacking 13

Example

A simple check would be:

 push NULL
 push 0
 push OPEN_EXISTING
 push NULL
 push FILE_SHARE_READ
 push GENERIC_READ
 push .szDeviceNameNtice
 call [CreateFileA]
 cmp eax,INVALID_HANDLE_VALUE
 jne .debugger_found

.szDeviceNameNtice db "\\.\NTICE",0

Some versions of SoftICE also append numbers in the device name causing this check to

always fail. A workaround described in reversing forums involve brute forcing the appended

numbers until the correct device name is found. Newer packers also use the device driver

detection technique to detect system monitors such as Regmon and Filemon.

Solution

A simple solution would be to set a breakpoint inside kernel32!CreateFileFileW(), and when the

breakpoint is hit, either manipulate the FileName parameter or change its return value to

INVALID_HANDLE_VALUE (0xFFFFFFFF).

2.12. OllyDbg: Guard Pages

This check is specific to OllyDbg, since it is related to OllyDbg’s on-acess/write memory

breakpoint feature.

Aside from hardware and software breakpoints, OllyDbg allows an on-access/write memory

breakpoint; this type of breakpoint is implemented using guard pages11. Simply stated, guard

pages provide an application a way to be notified if a memory is being accessed.

Guard pages are set using the PAGE_GUARD page protection modifier, if the address is being

accessed is part of a guard page, STATUS_GUARD_PAGE_VIOLATION (0x80000001) will be

raised. Packers use the behavior that if the process is being debugged under OllyDbg and a

guard page is being accessed, no exception will be thrown, instead, the access will be treated

as a memory breakpoint.

Example

In the example code below, the code allocates a memory, store code in the allocated memory,

and then enable the PAGE_GUARD attribute. It then initializes its marker (EAX) to 0, and

trigger the STATUS_GUARD_PAGE_VIOLATION by executing code in the page guarded

allocated memory. If the code is being debugged in OllyDbg, the marker will be unchanged

since the exception handler will not be called.

 ; set up exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp

 ; allocate memory
 push PAGE_READWRITE
 push MEM_COMMIT
 push 0x1000
 push NULL
 call [VirtualAlloc]
 test eax,eax

11 See http://msdn2.microsoft.com/en-us/library/aa366549.aspx for explanation of guard pages

The Art of Unpacking 14

 jz .failed
 mov [.pAllocatedMem],eax

 ; store a RETN on the allocated memory
 mov byte [eax],0xC3

 ; then set the PAGE_GUARD attribute of the allocated memory
 lea eax,[.dwOldProtect]
 push eax
 push PAGE_EXECUTE_READ | PAGE_GUARD
 push 0x1000
 push dword [.pAllocatedMem]
 call [VirtualProtect]

 ; set marker (EAX) as 0
 xor eax,eax
 ; trigger a STATUS_GUARD_PAGE_VIOLATION exception
 call [.pAllocatedMem]
 ; check if marker had not been changed (exception handler not called)
 test eax,eax
 je .debugger_found
 :::

.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]
 ;set marker (CONTEXT.EAX) to 0xffffffff
 ; to signal that the exception handler was called
 mov dword [eax+0xb0],0xffffffff
 xor eax,eax
 retn

Solution

Since guard pages triggers an exception, the reverser can deliberately trigger an exception so

that the exception handler will be called. In the example shown, a reverser can replace the

RETN instruction with an “INT3” then a “RETN” instruction, once INT3 is executed, force the

debugger to call the exception handler via Shift+F9. Then, after the exception handler is called,

EAX will be set to the proper value, and then the RETN instruction will be executed.

If the exception handler checks if the exception was indeed a

STATUS_GUARD_PAGE_VIOLATION, a reverser can set a breakpoint in the exception handler

and then modify the passed ExceptionRecord parameter, specifically, ExceptionRecord.

ExceptionCode is set to STATUS_GUARD_PAGE_VIOLATION manually.

3. TECHNIQUES: BREAKPOINT AND PATCHING DETECTION

This section lists the most common ways on how packers identify software breakpoints,

hardware breakpoints and patching.

3.1. Software Breakpoint Detection

Software breakpoints are breakpoints which are set by modifying the code at the target

address, replacing it with a byte value 0xCC (INT3 / Breakpoint Interrupt). Packers identify

software breakpoints by scanning for the byte 0xCC in the protector code and/or an API code.

Example

A check can be as simple as the following:

 cld
 mov edi,Protected_Code_Start
 mov ecx,Protected_Code_End - Protected_Code_Start
 mov al,0xcc

The Art of Unpacking 15

 repne scasb
 jz .breakpoint_found

Some packers apply some operation on the compared byte value so the check is not obvious,

such as:

if(byte XOR 0x55 == 0x99) then breakpoint found

Where: 0x99 == 0xCC XOR 0x55

Solution

If software breakpoints are being identified, the reverser can use hardware breakpoints

instead. If a breakpoint is needed to be set inside an API code, but the packer attempts to

search for breakpoints inside an API code, the reverser can set a breakpoint on the UNICODE

version of the API which will be eventually called by the ANSI versions (eg: LoadLibraryExW

instead of LoadLibraryA), or the corresponding native API (ntdll!LdrLoadDll) instead.

3.2. Hardware Breakpoint Detection

Another type of breakpoint is a hardware breakpoint. Hardware breakpoints are set by setting

the debug registers12, these registers are named Dr0 to Dr7. Dr0-Dr3 contains the address of

up to four breakpoints, Dr6 contains flags to identify what breakpoint had been triggered,

while Dr7 contains flags to control the four hardware breakpoints such as enabling/disabling

breakpoints or breaking on read/write.

Detecting hardware breakpoints requires a bit of code to perform since debug registers are not

accessible in Ring 3. Thus, packers utilize the CONTEXT structure which contains the values of

the debug registers. The CONTEXT structure is accessed via the ContextRecord parameter

passed to an exception handler.

Example

Here is an example code to query the debug registers:

 ; set up exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp

 ; eax will be 0xffffffff if hardware breakpoints are identified
 xor eax,eax

 ; throw an exception
 mov dword [eax],0

 ; restore exception handler
 pop dword [fs:0]
 add esp,4

 ; test if EAX was updated (breakpoint identified)
 test eax,eax
 jnz .breakpoint_found

 :::

.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]

 ;check if Debug Registers Context.Dr0-Dr3 is not zero
 cmp dword [eax+0x04],0

12 See “Debug Registers” in IA-32 Intel® Architecture Software Developer's Manual Volume 3B: System
Programming Guide, Part 2

The Art of Unpacking 16

 jne .hardware_bp_found
 cmp dword [eax+0x08],0
 jne .hardware_bp_found
 cmp dword [eax+0x0c],0
 jne .hardware_bp_found
 cmp dword [eax+0x10],0
 jne .hardware_bp_found
 jmp .exception_ret

.hardware_bp_found
 ;set Context.EAX to signal breakpoint found
 mov dword [eax+0xb0],0xffffffff

.exception_ret
 ;set Context.EIP upon return
 add dword [eax+0xb8],6
 xor eax,eax
 retn

Some packers also use the debug registers as part of decryption keys. Either these registers

are initialized to a specific value or left to have the value 0. Thus, if these debug registers are

modified, decryption will fail and will cause unexpected termination due to invalid instructions

if the code being decrypted is part of the unpacking stub or the protected executable.

Solution

The reverser can try using software breakpoints if software breakpoints are not being checked.

Also, the on-access/write memory breakpoint feature of OllyDbg can be used. Setting software

breakpoints inside UNICODE version of the APIs or the native APIs can be another solution if

the reverser would need to set API breakpoints.

3.3. Patching Detection via Code Checksum Calculation

Patching detection tries to identify if a part of the packer code had been modified which

suggests that anti-debugging routines may had been disabled, and as a second purpose can

identify if software breakpoints are set. Patching detection is implemented via code checksum,

and the checksum calculation can range from simple to intricate checksum/hash algorithms.

Example

Below is a fairly simple example for checksum calculation:

 mov esi,Protected_Code_Start
 mov ecx,Protected_Code_End - Protected_Code_Start
 xor eax,eax
.checksum_loop
 movzx ebx,byte [esi]
 add eax,ebx
 rol eax,1
 inc esi
 loop .checksum_loop

 cmp eax,dword [.dwCorrectChecksum]
 jne .patch_found

Solution

If software breakpoints are being identified by a code checksum routine, hardware breakpoints

can be used instead. If code patching is being identified by the checksum routine, a reverser

can identify where the checksum routine is by setting an on-access breakpoint on the patched

address, and once the checksum routine is found, modify the checksum value to the expected

value or just change the appropriate flags after a failed comparison.

The Art of Unpacking 17

4. TECHNIQUES: ANTI-ANALYSIS

Anti-analysis techniques aim to slow down reversers from analyzing and understanding the

protector code and/or the packed executable. Techniques such as encryption/compression,

garbage code, permutation, and anti-disassembly are discussed. These are the techniques

which require a reverser to have traits such as patience and cleverness in order to solve since

they aim to confuse, bore and waste the time of a reverser.

4.1. Encryption and Compression

Encryption and compression are the most basic forms of anti-analysis. They are initial

defenses to prevent a reverser from just loading the protected executable in a disassembler

and then start analysis without any difficulty.

Encryption. Packers usually encrypt both the protector code and the protected executable. The

encryption algorithm greatly varies between packers, which range from very simple XOR loops

to very complex loops that perform several computations. With polymorphic packers, the

encryption algorithm also varies between generated samples and the decryption code is

permutated to look very different on each generated samples, and may prevent a packer

identifier tool from correctly identifying the packer.

Decryption routines are easily recognizable as loops which perform a fetch, compute, and

store data operation. Below is an example of a simple decryption routine that performs several

XOR operations on an encrypted DWORD value.

0040A07C LODS DWORD PTR DS:[ESI]
0040A07D XOR EAX,EBX
0040A07F SUB EAX,12338CC3
0040A084 ROL EAX,10
0040A087 XOR EAX,799F82D0
0040A08C STOS DWORD PTR ES:[EDI]
0040A08D INC EBX
0040A08E LOOPD SHORT 0040A07C ;decryption loop

Here is another example of a decryption routine of a polymorphic packer:

00476056 MOV BH,BYTE PTR DS:[EAX]
00476058 INC ESI
00476059 ADD BH,0BD
0047605C XOR BH,CL
0047605E INC ESI
0047605F DEC EDX
00476060 MOV BYTE PTR DS:[EAX],BH
00476062 CLC
00476063 SHL EDI,CL
::: More garbage code
00476079 INC EDX
0047607A DEC EDX
0047607B DEC EAX
0047607C JMP SHORT 0047607E
0047607E DEC ECX
0047607F JNZ 00476056 ;decryption loop

And below is another decryption routine generated by the same polymorphic packer:

0040C045 MOV CH,BYTE PTR DS:[EDI]
0040C047 ADD EDX,EBX
0040C049 XOR CH,AL
0040C04B XOR CH,0D9
0040C04E CLC
0040C04F MOV BYTE PTR DS:[EDI],CH
0040C051 XCHG AH,AH
0040C053 BTR EDX,EDX

The Art of Unpacking 18

0040C056 MOVSX EBX,CL
::: More garbage code
0040C067 SAR EDX,CL
0040C06C NOP
0040C06D DEC EDI
0040C06E DEC EAX
0040C06F JMP SHORT 0040C071
0040C071 JNZ 0040C045 ;decryption loop

In the last two examples, the highlighted lines are the main decryption instructions, while the

remaining instructions are garbage codes to confuse the reverser. Notice how the registers are

being swapped and how the decryption method changes between the two examples.

Compression. The main purpose of compression is to reduce the size of the executable code

and its data, but because this results for the original executable including its readable strings

becoming compressed data, it has the side effect of obfuscation. Some examples of

compression engine used by packers are - NRV (Not Really Vanished) compression and LZMA

(Lempel-Ziv-Markov chain-Algorithm) for UPX, aPLib for FSG, LZMA for Upack and LZO for

yoda’s Protector. Some of these compression engines are free for non-commercial use but

requires a license/registration for commercial use.

Solution

Decryption and decompression loops are easy to bypass, the reverser just needs to know

when the decryption/decompression loop terminates and then set a breakpoint on the

instruction after the loop. Remember, some packers may have breakpoint detection code

inside these decryption loops.

4.2. Garbage Code and Code Permutation

Garbage Code. Inserting garbage code in the unpacking routine is another effective way to

confuse a reverser. It aims to hide the real purpose of the code, be it a decryption routine or

anti-reversing routines such as debugger detection. Garbage code adds effectiveness to the

debugger/breakpoint/patching detection techniques described in this paper by hiding them in

a mass of unrelated “do nothing” and confusing instructions. Furthermore, effective garbage

codes are those that look like legitimate/working code.

Example

Below is an example decryption routine with several garbage code inserted between the

relevant instructions:

0044A21A JMP SHORT sample.0044A21F
0044A21C XOR DWORD PTR SS:[EBP],6E4858D
0044A223 INT 23
0044A225 MOV ESI,DWORD PTR SS:[ESP]
0044A228 MOV EBX,2C322FF0
0044A22D LEA EAX,DWORD PTR SS:[EBP+6EE5B321]
0044A233 LEA ECX,DWORD PTR DS:[ESI+543D583E]
0044A239 ADD EBP,742C0F15
0044A23F ADD DWORD PTR DS:[ESI],3CB3AA25
0044A245 XOR EDI,7DAC77F3
0044A24B CMP EAX,ECX
0044A24D MOV EAX,5ACAC514
0044A252 JMP SHORT sample.0044A257
0044A254 XOR DWORD PTR SS:[EBP],AAE47425
0044A25B PUSH ES
0044A25C ADD EBP,5BAC5C22
0044A262 ADC ECX,3D71198C
0044A268 SUB ESI,-4
0044A26B ADC ECX,3795A210
0044A271 DEC EDI
0044A272 MOV EAX,2F57113F
0044A277 PUSH ECX
0044A278 POP ECX
0044A279 LEA EAX,DWORD PTR SS:[EBP+3402713D]

The Art of Unpacking 19

0044A27F DEC EDI
0044A280 XOR DWORD PTR DS:[ESI],33B568E3
0044A286 LEA EBX,DWORD PTR DS:[EDI+57DEFEE2]
0044A28C DEC EDI
0044A28D SUB EBX,7ECDAE21
0044A293 MOV EDI,185C5C6C
0044A298 MOV EAX,4713E635
0044A29D MOV EAX,4
0044A2A2 ADD ESI,EAX
0044A2A4 MOV ECX,1010272F
0044A2A9 MOV ECX,7A49B614
0044A2AE CMP EAX,ECX
0044A2B0 NOT DWORD PTR DS:[ESI]

The only relevant decryption instructions in the example were:

0044A225 MOV ESI,DWORD PTR SS:[ESP]
0044A23F ADD DWORD PTR DS:[ESI],3CB3AA25
0044A268 SUB ESI,-4
0044A280 XOR DWORD PTR DS:[ESI],33B568E3
0044A29D MOV EAX,4
0044A2A2 ADD ESI,EAX
0044A2B0 NOT DWORD PTR DS:[ESI]

Code Permutation. Code permutation is another technique used by more advanced packers.

With code permutation, simple instructions are translated into a more complex series of

instructions. This requires the packer to understand the instructions and generate new series

of instructions that performs the equivalent operation.

A simple permutation example would be the following instructions:

 mov eax,ebx
 test eax,eax

Being translated into the following equivalent instructions:

 push ebx
 pop eax
 or eax,eax

Combined with garbage code, permutated code is an effective technique to slow down a

reverser from understanding a protected code.

Example

To illustrate, below is an example of a debugger detection routine which had been permutated

and garbage codes inserted in between the permutated instructions:

004018A3 MOV EBX,A104B3FA
004018A8 MOV ECX,A104B412
004018AD PUSH 004018C1
004018B2 RETN
004018B3 SHR EDX,5
004018B6 ADD ESI,EDX
004018B8 JMP SHORT 004018BA
004018BA XOR EDX,EDX
004018BC MOV EAX,DWORD PTR DS:[ESI]
004018BE STC
004018BF JB SHORT 004018DE
004018C1 SUB ECX,EBX
004018C3 MOV EDX,9A01AB1F
004018C8 MOV ESI,DWORD PTR FS:[ECX]
004018CB LEA ECX,DWORD PTR DS:[EDX+FFFF7FF7]
004018D1 MOV EDX,600
004018D6 TEST ECX,2B73
004018DC JMP SHORT 004018B3

The Art of Unpacking 20

004018DE MOV ESI,EAX
004018E0 MOV EAX,A35ABDE4
004018E5 MOV ECX,FAD1203A
004018EA MOV EBX,51AD5EF2
004018EF DIV EBX
004018F1 ADD BX,44A5
004018F6 ADD ESI,EAX
004018F8 MOVZX EDI,BYTE PTR DS:[ESI]
004018FB OR EDI,EDI
004018FD JNZ SHORT 00401906

The example shown is just a simple debugger detection routine:

00401081 MOV EAX,DWORD PTR FS:[18]
00401087 MOV EAX,DWORD PTR DS:[EAX+30]
0040108A MOVZX EAX,BYTE PTR DS:[EAX+2]
0040108E TEST EAX,EAX
00401090 JNZ SHORT 00401099

Solution

Garbage codes and permutated instructions are ways to bore and waste the reverser’s time.

Thus, it is important to know if the hidden instructions between these obscuring techniques

are worth understanding (eg: just performing decryption, packer initialization etc).

One way to avoid tracing thru the obscured instructions is to try setting breakpoints on APIs

which packers mostly used (eg: VirtualAlloc/VirtualProtect/LoadLibrary/GetProcAddress, etc.)

or an API logging tool can also be used, and then treat these APIs as “trace markers” in a

packer trace. If something went wrong (such as the debugger or breakpoints being detected)

in between these trace markers, then it is the time to do a detailed trace of the code.

Additionally, setting on-access/write breakpoints allows a reverser to pinpoint what

instructions are trying to modify/access interesting parts of the protected process instead of

tracing thru a mass of code that eventually (and hopefully) lead to the exact routine.

Finally, running OllyDbg in VMWare and routinely taking snapshots of the debugging session

allows the reverser to go back on a specific trace state. And if something went wrong, the

tracing session can be reverted back to a specific trace state.

4.3. Anti-Disassembly

Another way to confuse the reverser is to obfuscate the disassembly. Anti-disassembly is an

effective way to complicate the process of understanding the binary via static analysis, and if

combined with garbage code and permutation, makes it even more effective.

One example of an anti-disassembly technique is to insert a garbage byte and then add a

conditional branch which will transfer execution to the garbage byte; however, the condition

for the conditional branch will always be FALSE. Thus, the garbage byte will never be executed

but will trick disassemblers to start disassembling the garbage byte address, which eventually

will lead to an incorrect disassembly output.

Example

Here is an example of the simple PEB.BeingDebugged flag check with some anti-disassembly

code added. The highlighted lines are the main instructions, while the remaining are the anti-

disassembly codes. It uses the garbage byte 0xff and adds fake conditional jump into the

garbage byte for disassemblers to follow:

 ;Anti-disassembly sequence #1

 push .jmp_real_01
 stc
 jnc .jmp_fake_01
 retn
.jmp_fake_01:

The Art of Unpacking 21

 db 0xff
.jmp_real_01:
 ;--------------------------
 mov eax,dword [fs:0x18]

 ;Anti-disassembly sequence #2

 push .jmp_real_02
 clc
 jc .jmp_fake_02
 retn
.jmp_fake_02:
 db 0xff
.jmp_real_02:
 ;--------------------------
 mov eax,dword [eax+0x30]
 movzx eax,byte [eax+0x02]
 test eax,eax
 jnz .debugger_found

Below is the disassembly output in WinDbg:

0040194a 6854194000 push 0x401954
0040194f f9 stc
00401950 7301 jnb image00400000+0x1953 (00401953)
00401952 c3 ret
00401953 ff64a118 jmp dword ptr [ecx+0x18]
00401957 0000 add [eax],al
00401959 006864 add [eax+0x64],ch
0040195c 194000 sbb [eax],eax
0040195f f8 clc
00401960 7201 jb image00400000+0x1963 (00401963)
00401962 c3 ret
00401963 ff8b40300fb6 dec dword ptr [ebx+0xb60f3040]
00401969 40 inc eax
0040196a 0285c0750731 add al,[ebp+0x310775c0]

And the disassembly output in OllyDbg:

0040194A 68 54194000 PUSH 00401954
0040194F F9 STC
00401950 73 01 JNB SHORT 00401953
00401952 C3 RETN
00401953 FF64A1 18 JMP DWORD PTR DS:[ECX+18]
00401957 0000 ADD BYTE PTR DS:[EAX],AL
00401959 0068 64 ADD BYTE PTR DS:[EAX+64],CH
0040195C 1940 00 SBB DWORD PTR DS:[EAX],EAX
0040195F F8 CLC
00401960 72 01 JB SHORT 00401963
00401962 C3 RETN
00401963 FF8B 40300FB6 DEC DWORD PTR DS:[EBX+B60F3040]
00401969 40 INC EAX
0040196A 0285 C0750731 ADD AL,BYTE PTR SS:[EBP+310775C0]

And finally, the disassembly output in IDAPro:

0040194A push (offset loc_401953+1)
0040194F stc
00401950 jnb short loc_401953
00401952 retn
00401953 ; --
00401953
00401953 loc_401953: ; CODE XREF: sub_401946+A
00401953 ; DATA XREF: sub_401946+4
00401953 jmp dword ptr [ecx+18h]
00401953 sub_401946 endp
00401953
00401953 ; --

The Art of Unpacking 22

00401957 db 0
00401958 db 0
00401959 db 0
0040195A db 68h ; h
0040195B dd offset unk_401964
0040195F db 0F8h ; °
00401960 db 72h ; r
00401961 db 1
00401962 db 0C3h ; +
00401963 db 0FFh
00401964 unk_401964 db 8Bh ; ï ; DATA XREF: text:0040195B
00401965 db 40h ; @
00401966 db 30h ; 0
00401967 db 0Fh
00401968 db 0B6h ;
00401969 db 40h ; @
0040196A db 2
0040196B db 85h ; à
0040196C db 0C0h ; +
0040196D db 75h ; u

Notice how all three disassemblers/debuggers had fallen into the anti-disassembly trick, which

is very annoying and confusing to a reverser analyzing the disassembly. There are several

other ways to confuse disassemblers, and the illustration was just one example. Additionally,

these anti-disassembly codes can be coded in a macro so that the assembly source is cleaner.

The reader is advised to refer to an excellent reversing book by Eldad Eliam13 which contains

detailed information about anti-disassembly techniques and other reversing topics.

5. TECHNIQUES : DEBUGGER ATTACKS

This section enumerates techniques that packers use to actively attack the debugger in such a

way that execution will suddenly stop if the process is being debugged, breakpoints are

disabled, etc. Similar to the previously described techniques, these techniques can be made

more effective if they are hidden using anti-analysis techniques.

5.1. Misdirection and Stopping Execution via Exceptions

Tracing thru the code in a linear manner allows a reverser to easily understand and grasp the

purpose of the code. Thus, some packers employ several techniques so that tracing the code

is not linear and time consuming.

One commonly used technique is to throw several exceptions in the process of unpacking. By

throwing caught exceptions, the reverser will need to understand where EIP will be pointing to

upon exception, and where the EIP will be pointing after the exception handler had executed.

Additionally, exceptions are a way for packers to repeatedly stop execution of the unpacking

code. Because when exceptions are thrown and the process is under a debugger, the

debugger temporarily stops execution of the unpacking code.

Packers commonly use the Structured Exception Handling (SEH) 14 as a mechanism for

exception handling. However, newer packers also started to use Vectored Exceptions15.

Example

13 See Reversing: Secrects of Reverse Engineering in the reference section
14 See http://www.microsoft.com/msj/0197/exception/exception.aspx for in-depth information about SEH
15 See http://msdn.microsoft.com/msdnmag/issues/01/09/hood/ for an in-depth information about
Vectored Exceptions

The Art of Unpacking 23

Below is an example code that performs misdirection by throwing an overflow exception (via

INTO) when the overflow flag is set by the ROL instruction after loop iteration. But since an

overflow exception is a trap exception, EIP will just point to the JMP instruction. If the reverser

is using OllyDbg, and the reverser did not pass the exception to the exception handler (via

Shift+F7/F8/F9) and just continually performs a step, the reverser will be tracing an endless

loop.

 ; set up exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp

 ; throw an exception
 mov ecx,1
.loop:
 rol ecx,1
 into
 jmp .loop

 ; restore exception handler
 pop dword [fs:0]
 add esp,4
 :::

.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]
 ;set Context.EIP upon return
 add dword [eax+0xb8],2
 xor eax,eax
 retn

Packers commonly throw access violations (0xC0000005), breakpoint (0x80000003) and

single step (0x80000004) exceptions.

Solution

For packers which uses caught

exceptions for no other reason than

transferring execution to different parts

of the code, OllyDbg can be configured

so that exceptions are automatically

passed to exceptions handlers. This

feature can be configured via Options ->

Debugging Options -> Exceptions. On

the right side is a screen shot of the

configuration dialog for handling

exceptions. A reverser can also add

custom exceptions if the exception is not

one of those that can be selected via a

checkbox.

For packers which performs important

operations inside an exception handler. The reverser can set a breakpoint in the exception

handler in which the address can be viewed in OllyDbg using View->SEH Chain. Then,

pressing Shift+F7/F8/F9 to transfer control to the exception handler.

5.2. Blocking Input

To prevent a reverser from controlling the debugger, a packer can use the

user32!BlockInput() API to block keyboard and mouse input while the main unpacking routine

is being executed. Hidden within garbage codes and anti-disassembly techniques, this can be

The Art of Unpacking 24

effective if not identified by the reverser. If executed, the system will appear to be

unresponsive, leaving the reverser baffled.

A typical example would be a reverser setting a breakpoint inside GetProcAddress(), then

running the unpacking code until the breakpoint is hit. However, in the process of skipping

several garbage codes, the packer had called BlockInput(). And once the GetProcAddress()

breakpoint is hit, the reverser suddenly cannot control the debugger leaving him perplexed on

what just happened.

Example

BlockInput() takes 1 boolean parameter fBlockIt. If true, keyboard and mouse events are

blocked, if false, keyboard and mouse events are unblocked:

 ; Block input
 push TRUE
 call [BlockInput]

 ; ...Unpacking code...

 ; Unblock input
 push FALSE
 call [BlockInput]

Solution

Fortunately, the simple solution to patch BlockInput() to just perform a RETN. Here’s the

ollyscript to patch the entry of user32!BlockInput():

 gpa "BlockInput", "user32.dll"
 mov [$RESULT], #C20400# //retn 4

The Olly Advanced plugin also has the option to patch BlockInput(). Additionally, pressing

CTRL+ALT+DELETE will allow the user to unblock input manually.

5.3. ThreadHideFromDebugger

This technique uses the API ntdll!NtSetInformationThread() which is usually used for setting a

thread’s priority. However, the said API can also be used to prevent debugging events to be

sent to the debugger.

The parameters to NtSetInformationThread() are shown below. To perform this technique,

TheadHideFromDebugger (0x11) is passed as the ThreadInformationClass parameter,

ThreadHandle is usually set to the current thread handle (0xfffffffe):

NTSTATUS NTAPI NtSetInformationThread(
 HANDLE ThreadHandle,
 THREAD_INFORMATION_CLASS ThreadInformationClass,
 PVOID ThreadInformation,
 ULONG ThreadInformationLength
);

Internally, ThreadHideFromDebugger will set the HideThreadFromDebugger field of the

ETHREAD16 kernel structure. Once set, the internal kernel function DbgkpSendApiMessage(),

whose main purpose is to send events to the debugger is never invoked.

Example

A typical example of a call to the NtSetInformationThread() would be:

 push 0 ;InformationLength
 push NULL ;ThreadInformation

16 Data type of the ETHREAD structure is _ETHREAD

The Art of Unpacking 25

 push ThreadHideFromDebugger ;0x11
 push 0xfffffffe ;GetCurrentThread()
 call [NtSetInformationThread]

Solution

A breakpoint can be set in ntdll!NtSetInformationThread(), and once hit, the reverser can

manipulate the EIP to the prevent the API call from reaching the kernel. This can also be done

automatically via an ollyscript. Additionally, the Olly Advanced plugin has the option to patch

this API so that if the ThreadInformationClass parameter is set to HideThreadFromDebugger, it

will just perform a return instead of calling the kernel code.

5.4. Disabling Breakpoints

Another way to attack the debugger is by disabling breakpoints. To disable hardware

breakpoints, a packer will modify the debug registers via the CONTEXT structure.

Example

In this example, the debug registers are cleared via the CONTEXT record passed to the

exception handler:

 ; set up exception handler
 push .exception_handler
 push dword [fs:0]
 mov [fs:0], esp

 ; throw an exception
 xor eax,eax
 mov dword [eax],0

 ; restore exception handler
 pop dword [fs:0]
 add esp,4
 :::

.exception_handler
 ;EAX = CONTEXT record
 mov eax,[esp+0xc]

 ;Clear Debug Registers: Context.Dr0-Dr3,Dr6,Dr7
 mov dword [eax+0x04],0
 mov dword [eax+0x08],0
 mov dword [eax+0x0c],0
 mov dword [eax+0x10],0
 mov dword [eax+0x14],0
 mov dword [eax+0x18],0

 ;set Context.EIP upon return
 add dword [eax+0xb8],6
 xor eax,eax
 retn

On the other hand, with software breakpoints, the packer can just search for INT3s (0xCC)

and replace them with an arbitrary/random opcode; by doing this, the breakpoint will be

disabled and the original instruction is corrupted.

Solution

Clearly, if hardware breakpoints are being detected, software breakpoints can be used, vice

versa. If both are being detected, try using the on-memory access/write breakpoints feature

of OllyDbg.

The Art of Unpacking 26

5.5. Unhandled Exception Filter

The MSDN documentation states that if an exception reaches unhandled exception filter

(kernel32!UnhandledExceptionFilter), and that the application is not being debugged, the

unhandled exception filter will call the top level exception filter specified as parameter in the

kernel32!SetUnhandledExceptionFilter() API. Packers take advantage of this by setting up an

exception filter and then throwing an exception, the exception will just be received by the

debugger as a second chance exception if it is being debugged, otherwise, control is

transferred into the exception filter and execution can continue.

Example

Below is an example in which an top level exception filter is set using

SetUnhandledExceptionFilter(), and then an access violation is thrown. If the process is being

debugged, the debugger will just receive a second chance exception; otherwise, the exception

filter will setup CONTEXT.EIP and continue the execution.

 ;set the exception filter
 push .exception_filter
 call [SetUnhandledExceptionFilter]
 mov [.original_filter],eax

 ;throw an exception
 xor eax,eax
 mov dword [eax],0

 ;restore exception filter
 push dword [.original_filter]
 call [SetUnhandledExceptionFilter]

 :::

.exception_filter:
 ;EAX = ExceptionInfo.ContextRecord
 mov eax,[esp+4]
 mov eax,[eax+4]

 ;set return EIP upon return
 add dword [eax+0xb8],6

 ;return EXCEPTION_CONTINUE_EXECUTION
 mov eax,0xffffffff
 retn

Some packers also manually set up the exception filter by setting kernel32!

_BasepCurrentTopLevelFilter directly instead of calling SetUnhandledExceptionFilter(), this is

in case the reverser sets a breakpoint on the said API.

Solution

Interestingly, the code inside kernel32!UnhandledExceptionFilter() uses

ntdll!NtQueryInformationProcess (ProcessDebugPort) to determine if the process is being

debugged, which it will then use to decide whether to call the registered exception filter or not.

Thus, the solution is the same solution as the DebugPort debugger detection technique.

5.6. OllyDbg: OutputDebugString() Format String Bug

This debugger attack is specific to OllyDbg. OllyDbg is known to be vulnerable to a format

string bug which can cause it to crash or execute arbitrary code, the bug is triggered by an

improper string parameter passed to kernel32!OutputDebugString(). This bug exists in the

current version of OllyDbg (1.10) and still not patched.

Example

This simple example causes OllyDbg to throw an access violation or unexpectedly terminate:

The Art of Unpacking 27

 push .szFormatString
 call [OutputDebugStringA]
 :::
.szFormatString db "%s%s",0

Solution

The solution involves patching the entry of kernel32!OutputDebugStringA() so it will just

perform a RETN.

6. TECHNIQUES : ADVANCED AND OTHER TECHNIQUES

This section enumerates advanced and other techniques that do not fall in the previous anti-

reversing categories.

6.1. Process Injection

Process injection has become a feature of some packers. With this feature, the unpacking stub

spawns a selected host process (e.g.: itself, explorer.exe, iexplorer.exe, etc.) and then inject

the unpacked executable into the host process.

On the right side is a screen shot of a packer that

supports process injection.

Malcodes use this packer feature to allow them to

bypass some firewalls that checks if the process is in

the list of allowed applications to perform external

network connections.

One method that packers use to perform process injection is as follows:

1. Spawn the host process as a suspended child process. This is done using the

CREATE_SUSPENDED process creation flag passed to kernel32!CreateProcess(). At

this point an initialization thread is created and suspended, DLLs are still not

loaded since the loader routine (ntdll!LrdInitializeThunk) is still not called. The

context of the said thread is setup such as the register values contains information

such as the PEB address, and entry point of the host process.

2. Using kernel32!GetThreadContext(), the context of the child process’ initialization

thread is retrieved

3. The PEB address of the child process is retrieved via CONTEXT.EBX

4. The image base of the child process is retrieved by reading PEB.ImageBase (PEB +

0x8)

The Art of Unpacking 28

5. The original host image in the child process is then unmapped using

ntdll!NtUnmapViewOfSection() with the BaseAddress parameter pointing to the

retrieved image base

6. The unpacking stub will then allocate memory inside the child process using

kernel32!VirtualAllocEx() with dwSize parameter equal to the image size of the

unpacked executable.

7. Using kernel32!WriteProcessMemory(), the PE header and each of the sections of

the unpacked executable is written to the child process.

8. The PEB.ImageBase of the child process is then updated to match the image base

of the unpacked executable.

9. The context of the child process’ initialization thread is then updated via

kernel32!SetThreadContext() in which CONTEXT.EAX is set to the entry point of

the unpacked executable.

10. Execution of the child process is resumed via kernel32!ResumeThread()

In order to debug the spawned child process beginning from its entry point, the reverser can

set a breakpoint in WriteProcessMemory() and when the section containing the entry point is

about to be written to the child process, the entry point code is patched with a “jump to self”

instruction (0xEB 0xFE). When the main thread of the child process is resumed, the child

process will enter an endless loop in its entry point. Then, at that point, the reverser can

attach a debugger in the child process, restore the modified instructions, and continue normal

debugging.

6.2. Debugger Blocker

A featured that had been introduced by the Armadillo packer is called the Debugger Blocker.

This prevents a reverser from attaching a debugger to a protected process. This protection is

implemented thru the use of debugging functions provided by Windows.

Specifically, the unpacking stub acts a debugger (parent process) where it spawns and

debugs/controls the child process which contains the unpacked executable.

Since the protected process is already being debugged, attaching a debugger via

kernel32!DebugActiveProcess() will fail since the corresponding native API,

ntdll!NtDebugActiveProcess() will return STATUS_PORT_ALREADY_SET. Internally, the failure

of NtDebugActiveProcess() is due to the DebugPort field of the EPROCESS kernel structure

being already set.

In order to attach a debugger to the protected process, a solution posted on several reversing

forums involves invoking kernel32!DebugActiveProcessStop() in the context of the parent

process. This can be done by attaching a debugger on the parent process, and setting a

breakpoint inside kernel32!WaitForDebugEvent(), once the breakpoint is hit, a code to invoke

DebugActiveProcessStop(ChildProcessPID) is then injected and executed, once the call

succeeds, a debugger can be attached to the protected process.

The Art of Unpacking 29

6.3. TLS Callbacks

Another technique used by packers is to execute code before the actual entry point is

executed. This is achieved thru the use Thread Local Storage (TLS) callback functions. Packers

may perform its debugger detection and decryption routines via these callback functions so

that the reverser will not be able to trace these routines.

TLS callbacks can be identified using PE file parsing tools such as pedump. With pedump, the

Data Directory entries will display if a TLS directory exists in the executable:

Data Directory
 EXPORT rva: 00000000 size: 00000000
 IMPORT rva: 00061000 size: 000000E0
 :::
 TLS rva: 000610E0 size: 00000018
 :::
 IAT rva: 00000000 size: 00000000
 DELAY_IMPORT rva: 00000000 size: 00000000
 COM_DESCRPTR rva: 00000000 size: 00000000
 unused rva: 00000000 size: 00000000

Then, the actual contents TLS directory is displayed. The AddressOfCallBacks field points to an

array of callback functions and is null-terminated:

TLS directory:
 StartAddressOfRawData: 00000000
 EndAddressOfRawData: 00000000
 AddressOfIndex: 004610F8
 AddressOfCallBacks: 004610FC
 SizeOfZeroFill: 00000000
 Characteristics: 00000000

In this example, RVA 0x4610fc points to the callback function pointers (0x490f43 and

0x44654e):

By default, OllyDbg will load the sample then pause at the entry point. Since TLS callbacks are

called before the actual entry point, OllyDbg should be configured so that that it will break on

the actual loader and before the TLS callbacks are called.

Breaking on the actual loader

code inside ntdll.dll can be set by

selecting Options -> Debugging

Options -> Events -> Make first

pause at -> System breakpoint.

Once set, OllyDbg will break

inside ntdll! _LdrpInitialize-

Process() which is just before

ntdll!_LdrpRunInitializeRoutines() executes the TLS callbacks. Once set, breakpoints can be

set on the callback routines and then traced.

More information about the PE file format including the binary/source for pedump can be

found on the following links:

The Art of Unpacking 30

An In-Depth Look into the Win32 Portable Executable File Format by Matt Pietrek

http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx

An In-Depth Look into the Win32 Portable Executable File Format, Part 2 by Matt Pietrek

http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/

A latest version of the PE file format from Microsoft can be found on the following link:

Microsoft Portable Executable and Common Object File Format Specification

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

6.4. Stolen Bytes

Stolen bytes are basically portions of codes of the protected executable (usually few

instructions of the entry point) which are removed by the packer and is copied and executed

from an allocated memory. This protects the executable in a way that if the protected process

is dumped from memory, instructions that had been stolen are not recovered.

Here is an example of an executable’s original entry point:

004011CB MOV EAX,DWORD PTR FS:[0]
004011D1 PUSH EBP
004011D2 MOV EBP,ESP
004011D4 PUSH -1
004011D6 PUSH 0047401C
004011DB PUSH 0040109A
004011E0 PUSH EAX
004011E1 MOV DWORD PTR FS:[0],ESP
004011E8 SUB ESP,10
004011EB PUSH EBX
004011EC PUSH ESI
004011ED PUSH EDI

And below is the same sample with the first two instructions stolen by the Enigma Protector

packer:

004011CB POP EBX
004011CC CMP EBX,EBX
004011CE DEC ESP
004011CF POP ES
004011D0 JECXZ SHORT 00401169
004011D2 MOV EBP,ESP
004011D4 PUSH -1
004011D6 PUSH 0047401C
004011DB PUSH 0040109A
004011E0 PUSH EAX
004011E1 MOV DWORD PTR FS:[0],ESP
004011E8 SUB ESP,10
004011EB PUSH EBX
004011EC PUSH ESI
004011ED PUSH EDI

This is the sample example in which the several instructions had been stolen by the ASProtect

packer. It added a jump instruction to a routine which executes the stolen instructions. The

stolen instructions are then intertwined with garbage code to make it harder to restore the

stolen instructions.

004011CB JMP 00B70361
004011D0 JNO SHORT 00401198
004011D3 INC EBX
004011D4 ADC AL,0B3
004011D6 JL SHORT 00401196
004011D8 INT1
004011D9 LAHF
004011DA PUSHFD

The Art of Unpacking 31

004011DB MOV EBX,1D0F0294
004011E0 PUSH ES
004011E1 MOV EBX,A732F973
004011E6 ADC BYTE PTR DS:[EDX-E],CH
004011E9 MOV ECX,EBP
004011EB DAS
004011EC DAA
004011ED AND DWORD PTR DS:[EBX+58BA76D7],ECX

6.5. API Redirection

API redirection is a way to prevent a reverser from easily rebuilding the import table of the

protected executable. Typically, the original import table is destroyed and calls to APIs are

redirected into routines located into an allocated memory, these routines are then responsible

for calling the actual API.

In this example, the code calls the API kernel32!CopyFileA():

00404F05 LEA EDI,DWORD PTR SS:[EBP-20C]
00404F0B PUSH EDI
00404F0C PUSH DWORD PTR SS:[EBP-210]
00404F12 CALL <JMP.&KERNEL32.CopyFileA>

The call was to a stub that performs a JMP in which the address is referenced from the import

table:

004056B8 JMP DWORD PTR DS:[<&KERNEL32.CopyFileA>]

However, when the ASProtect redirected the kernel32!CopyFileA() API, the stub was replaced

by a CALL to a routine in an allocated memory which eventually leads to execution of stolen

instructions from kernel32!CopyFileA():

004056B8 CALL 00D90000

Below is an illustration on how the stolen instructions are placed. The first 7 instructions of the

kernel!CopyFileA() code had been copied. Additionally, the code in which the call instruction at

0x7C83005E points to had also been copied. Then, control is transferred back inside

kernel32.dll in the middle of the kernel32!CopyFileA() routine via a RETN to 0x7C830063:

00D80003 MOV EDI,EDI

00D80005 PUSH EBP

00D80006 MOV EBP,ESP

00D80008 PUSH ECX

00D80009 PUSH ECX

00D8000A PUSH ESI

00D8000B PUSH DWORD PTR SS:[EBP+8]

00D8000E JMP SHORT 00D80013

00D80011 INT 20

00D80013 PUSH 7C830063 ;return EIP

00D80018 MOV EDI,EDI

00D8001A PUSH EBP

00D8001B MOV EBP,ESP

00D8001D PUSH ECX

00D8001E PUSH ECX

00D8001F PUSH ESI

00D80020 MOV EAX,DWORD PTR FS:[18]

00D80026 PUSH DWORD PTR SS:[EBP+8]

00D80029 LEA ESI,DWORD PTR DS:[EAX+BF8]

00D8002F LEA EAX,DWORD PTR SS:[EBP-8]

00D80032 PUSH EAX

00D80033 PUSH 7C80E2BF

00D80038 RETN

7C830053 MOV EDI,EDI

7C830055 PUSH EBP

7C830056 MOV EBP,ESP

7C830058 PUSH ECX

7C830059 PUSH ECX

7C83005A PUSH ESI

7C83005B PUSH DWORD PTR SS:[EBP+8]

7C83005E CALL kernel32.7C80E2A4

7C830063 MOV ESI,EAX

7C830065 TEST ESI,ESI

7C830067 JE SHORT kernel32.7C8300A6

Stolen instructions from kernel 32!CopyFileA

Actual kernel32!CopyFileA code

The Art of Unpacking 32

Some packers also go as far as loading the whole DLL image in an allocated memory and then

redirecting API calls into these DLL image copies. This technique effectively makes it difficult

to set breakpoints in the actual APIs.

6.6. Multi-Threaded Packers

With multi-threaded packers, another thread is usually spawned to perform some required

operation such as decrypting the protected executable. With multi-thread packers, complexity

is added and the difficulty of understanding the code increases since tracing the code gets

complicated.

One example of a multi-threaded packer is PECrypt, it uses a second thread to perform

decryption of a data that had been fetched by the main thread, and these threads are

synchronized using event objects.

PECrypt operates and synchronizes its threads as follows:

Thread 1

Fetch Data

Thread 2

Decrypt Data
Signal

Thread 1

Store Data
Signal

6.7. Virtual Machines

The concept of using virtual machines is simple: a reverser will eventually figure out how to

bypass/solve anti-debugging and anti-reversing techniques and that eventually, the protected

executable needs to be decrypted and executed in memory leaving it vulnerable to static

analysis.

With the advent of virtual machines, protected parts of the code are translated into p-codes

which are then translated into machine code for execution. Thus, the original machine

instructions are replaced and the complexity of understanding what the code does

exponentially increases.

Below is a fairly simple illustration of the concept:

Protected

Code

(x86)

Protected

Code

(P-code)

Convert
x86

instructions
ExecuteTranslate

Virtual

Machine

Protected Executable

Modern packers such as Oreans technologies’ CodeVirtualizer and StarForce apply the concept

of virtual machines to protect executables.

The solution for virtual machines, though not simple, is to analyze how the p-code is

structured and translated by the virtual machine. And with the obtained information, a

disassembler which will parse the p-code and translate them into machine code or

understandable instructions can be developed.

The Art of Unpacking 33

An example of developing a p-code disassembler and detailed information about

implementation of virtual machines can be found on the following link:

Defeating HyperUnpackMe2 With an IDA Processor Module, Rolf Rolles III

http://www.openrce.org/articles/full_view/28

The Art of Unpacking 34

7. TOOLS

This section lists publicly available tools that reversers and malcode analysts can use to

perform packer analysis and unpacking.

Disclaimer: These tools are 3rd party tools; the author of this paper is not liable if any of these

tools causes system instability or other issues that may impact your system. It is always

advisable to run these tools in a test or a malware analysis environment.

7.1. OllyDbg

http://www.ollydbg.de/

A powerful ring 3

debugger; used by

reversers and malcode

analysts. Its plug-in

capabilities allow other

reversers to create add-

ons to make reversing

and unpacking much

easier.

7.2. Ollyscript

http://www.openrce.org/downloads/details/106/OllyScript

An OllyDbg plug-in which allows automation of setting/handling

breakpoints, patching code/data, etc. thru the use of a scripting

language similar to assembly language. It’s most useful in

performing repetitive tasks and automate unpacking.

7.3. Olly Advanced

http://www.openrce.org/downloads/details/241/Olly_Advanced

If packers contain armoring code against reversers, this

OllyDbg plug-in is the armor to the reverser’s debugger. It

has several options to bypass several anti-debugging

techniques and hide OllyDbg from packers detecting the

debugger, and much more.

7.4. OllyDump

http://www.openrce.org/downloads/details/108/OllyDump

After a successful unpack, this OllyDbg plug-in can

be used for process dumping and import table

rebuilding.

7.5. ImpRec

http://www.woodmann.com/crackz/Unpackers/Imprec16.zip

Finally, this is another tool for process dumping and

import table rebuilding; it is a stand-alone tool, it

offers one of the most excellent import table

rebuilding capability.

The Art of Unpacking 35

8. REFERENCES

Books: Reverse Engineering, Software Protection

• Reversing: Secrets of Reverse Engineering. E.Eilam. Wiley, 2005.

• Crackproof Your Software, P.Cerven.No Starch Press, 2002.

Books: Windows and Processor Internals

• Microsoft Windows Internal, 4th Edition. M. Russinovich, D. Solomon, Microsoft Press,

2005

• IA-32 Intel® Architecture Software Developer's Manual. Volume 1-3, Intel Corporation,

2006.

http://www.intel.com/products/processor/manuals/index.htm

Links: Windows Internals

• ReactOS Project

http://www.reactos.org/en/index.html

Source Search: http://www.reactos.org/generated/doxygen/

• Wine Project

http://www.winehq.org/

Source Search: http://source.winehq.org/source/

• The Undocumented Functions

http://undocumented.ntinternals.net

• MSDN

http://msdn2.microsoft.com/en-us/default.aspx

Links: Reverse Engineering, Software Protection, Unpacking

• OpenRCE

http://www.openrce.org

• OpenRCE Anti Reverse Engineering Techniques Database

http://www.openrce.org/reference_library/anti_reversing

• RCE Forums

http://www.woodmann.com/forum/index.php

• EXETOOLS Forums

http://forum.exetools.com

