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Abstract 

The modern automobile is an increasingly complex network of computer systems. Cars 
are no longer analog, mechanical contraptions. Today, even the most fundamental 
vehicular functions have become computerized. And at the core of this complexity is the 
Controller Area Network, or CAN bus. The CAN bus is a modern vehicle’s central 
nervous system upon which the majority of intra-vehicular communication takes place. 
Unfortunately, the CAN bus is also inherently insecure. Designed more than 30 years 
ago, the CAN bus fails to implement even the most basic security principles. Prior 
scholarly research has demonstrated that an attacker can gain remote access to a vehicle’s 
CAN bus with relative ease. This paper, therefore, seeks to examine how an attacker 
already inside a vehicle’s network could manipulate the vehicle by reverse engineering 
CAN bus communications. By providing a reproducible methodology for CAN bus 
reverse engineering, this paper also serves as a basic guide for penetration testers and 
automotive security researchers. The techniques described in this paper can be used by 
security researchers to uncover vulnerabilities in existing automotive architectures, 
thereby encouraging automakers to produce more secure systems going forward. 
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Hacking the CAN Bus 2 

1. Introduction
The Controller Area Network, or CAN bus, has been the core internal network 

bus for passenger automobiles for over 30 years. While networking technology has 

advanced significantly since CAN’s introduction in the 1980s, the CAN bus itself has 

remained largely unchanged. According to automotive security researcher and author 

Craig Smith, “vehicle technologies haven’t kept pace with today’s more hostile security 

environment, leaving millions vulnerable to attack” (Smith, 2016). Since CAN predates 

the advent of the “World Wide Web” (CERN, 2013) and wireless networking protocols, 

it should come as no surprise that CAN was not designed to be secure from intrusion. 

What is surprising, however, is that automakers are still relying on such an archaic and 

inherently insecure platform in the era of on-board Wi-Fi, integrated cellular 

connectivity, Bluetooth, and even autonomous driving capability. 

Now, more than ever before, as automakers push rapidly towards fully 

autonomous vehicles, it is critical that vehicle owners and passengers can trust that 

vehicles are secure from cyber-attack. High-profile vehicle security researcher Charlie 

Miller recently remarked that “in an autonomous vehicle […] the computers are now 

even more in charge” (as cited in Greenberg, 2017). Miller also noted that while today’s 

cars allow the driver to override autonomous functions, the fully-autonomous car of the 

future will leave passengers “totally at the mercy of the vehicle” (as cited in Greenberg, 

2017). Securing vehicular networks, therefore, must be given top priority by auto 

manufacturers. The stakes are simply too high to leave security as an afterthought. 

There is widely agreed upon axiom in the information security industry that 

“security by obscurity is no security at all.” And this certainly holds true when dealing 

with the CAN bus. The “security by obscurity” model has only lasted for this long 

because there is a general lack of published research exploring CAN bus vulnerabilities. 

The goal of this research project, therefore, is to demonstrate the overall insecurity of the 

CAN bus architecture and to provide a reproducible method for reverse engineering the 

CAN bus to encourage others to undertake similar research. By exposing vulnerabilities 

in existing automotive architectures, the security community can encourage automakers 

to produce more secure systems going forward. 

roderick.h.currie@gmail.com	



© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights. 

Hacking the CAN Bus 3 

2. Recommended Reading
This paper covers the technical aspects of car hacking and CAN bus 

manipulation. For a more general, high-level overview of CAN bus technology, I 

recommend consulting my earlier GIAC Gold paper entitled Developments in Car 

Hacking (Currie, 2015) as a reference point and baseline. In addition to providing an 

overview of CAN, that paper explores some recent high-profile car hacking 

demonstrations and scholarly research on the topic of automotive hacking. I have also 

proposed some possible solutions to the security challenges facing CAN in my other 

recent GIAC Gold paper, The Automotive Top 5: Applying the Critical Controls to the 

Modern Automobile (Currie, 2016). 

3. Why Hack Cars?
Before delving into the technical details of how to perform CAN bus hacking, it is 

important to first consider the rationale for hacking cars. Ethical hackers have targeted 

traditional computer systems for decades. These so-called “white hat” hackers perform 

attacks against systems in order to expose vulnerabilities so that systems may be better 

secured going forward. 

The “security by obscurity” model, which is a favorite of the automotive industry, 

simply does not work. Rather than investing in proactive security solutions, automakers 

have a tendency to cut corners on security in favor of cost savings. This is a decision 

often made in the corporate boardroom. Until malicious vehicle hacking becomes more 

commonplace, automakers believe it does not warrant a significant amount of budget or 

attention. However, ignoring vulnerabilities or attempting to hide them does not lead to 

more secure systems. The only way to overcome this flawed model is through increased 

public exposure of security vulnerabilities. One of the goals of this paper is to increase 

awareness of the significant degree to which modern automotive systems are insecure. 

Car hacking can also be thought of as a type of security audit. By auditing the 

security of one’s own vehicle, it is possible to gain an improved understanding of the 

ways in which the vehicle might be vulnerable to attack and to take precautions 

accordingly. Most computer users would not trust a new web browser or a new operating 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 4 

system if they knew it had not undergone extensive penetration testing by the developer. 

Why, then, do we entrust our safety and the safety of our loved ones to automotive 

systems that are not audited for security by their manufacturers? 

Attempting to “hack” a car can seem like a monumental task. But when done 

safely and with a solid understanding of the underlying systems involved, it can be a very 

rewarding experience. Performing a successful car hack is not only intrinsically 

rewarding, but when documented and shared with the security research community, also 

serves to promote the creation of more secure systems in the future. This paper provides 

the background knowledge needed to undertake a basic car hacking project centered 

around CAN bus manipulation. While the information and techniques covered in this 

paper may not be groundbreaking, it is my hope that this paper inspires others to 

undertake car hacking projects of their own to further the cause for vehicular cyber 

security. Historically, when vehicular security vulnerabilities have been disclosed by 

researchers, the auto manufacturers have then been forced to address the problems by 

better securing their vehicles. By uncovering vulnerabilities in vehicular systems, the 

security research community can have a positive overall impact on the field of 

automotive cyber security. 

4. Existing Research
It must be emphasized that this project does not attempt to recreate a full vehicle 

attack model from start to finish. This project assumes that access to the vehicle’s internal 

network has already been established. It is widely accepted in the automotive security 

research community that vehicles can be hacked through numerous different external 

interfaces, and that doing so is a relatively trivial undertaking. 

In recent years, automotive cyber security has begun to receive increased public 

attention. This is due in large part to several high-profile examples of vehicle hacking 

that were picked up by the mainstream media. In 2011, a team of researchers from the 

University of Washington and the University of California, San Diego, successfully 

demonstrated that “remote exploitation is feasible via a broad range of attack vectors 

including mechanics’ tools, CD players, Bluetooth and cellular radio” (Checkoway et al., 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 5 

2011). This research brought to light just how many different potential points of entry 

were available on a typical, modern car. 

A few years later, in 2015, security researchers Charlie Miller and Chris Valasek 

demonstrated a remote exploitation of an unaltered passenger vehicle via the vehicle’s 

cellular interface. This attack took advantage of a vulnerability in the Sprint cellular 

network and the onboard Uconnect infotainment system of a 2014 Jeep Cherokee (Miller 

& Valasek, 2015). The attack allowed Miller and Valasek to remotely take over the 

Jeep’s steering, transmission, and brakes, the aftermath of which is shown in Figure 1: 

Figure 1: Jeep Cherokee in a Ditch after Brakes Were Disabled (Greenberg, 2015) 

In September 2016, a group of researchers from the Keen Security Lab 

successfully demonstrated an attack on a Tesla Model S. The team performed a wireless 

attack that required no physical access to the Tesla vehicle, and that ultimately allowed 

them to partially take over control of the vehicle. The attack required the Tesla to be 

connected to a malicious Wi-Fi hotspot, and took advantage of a vulnerability in the 

vehicle’s integrated web browser (Golson, 2016). As modern vehicles such as the Tesla 

Model S incorporate connectivity features such as on-board Wi-Fi and integrated web 

browsers, this only serves to broaden the attack surface and create new potential points of 

entry for attackers. 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 6 

This project, therefore, seeks to build upon existing vehicle security research by 

exploring vulnerabilities within a vehicle’s internal network rather than attempting to 

infiltrate the vehicle’s perimeter defenses. 

5. Hypothesis
The purpose of this project is to demonstrate that the modern internal vehicle 

network is generally insecure and can be manipulated with relative ease by utilizing a 

laptop computer, some inexpensive cables and adapters, and freely available software. 

Due to a lack of proper device authentication on the CAN bus, an ordinary laptop 

computer will be allowed to join and communicate on the CAN bus as if it were an 

authorized CAN controller. And due to a lack of message encryption, it will be possible 

to sniff and decode CAN messages to determine their function. Ultimately, sending 

modified CAN messages out over the CAN bus will result in the vehicle processing these 

reverse-engineered messages as if they were legitimate CAN traffic. 

6. Legality of Car Hacking
Despite the various published reports of car hacking by security researchers, 

manipulation of automotive security systems is not without its legal ramifications. Before 

making any attempt to reverse engineer the CAN bus, it is important to understand the 

legality of doing so. 

6.1. Volkswagen AG vs. the Security Community 
In 2012, a group of security researchers from Radboud University in the 

Netherlands and the University of Birmingham in the United Kingdom discovered a 

significant security flaw in the engine immobilizer systems of vehicles from a handful of 

different manufacturers (Gallagher, 2015). In the spirit of information sharing, the team 

reached out to the automakers to inform them of the vulnerability. The team also shared 

their intent to publish their findings publicly at an upcoming security conference. This 

was worrying to the automakers, particularly Volkswagen AG. The list of impacted cars 

included vehicles from Volkswagen’s Porsche, Audi, Bentley, and Lamborghini brands 

(Gallagher, 2015). Volkswagen was concerned that public disclosure of the vulnerability 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 7 

would benefit car thieves, and would require an expensive recall of all affected models to 

remediate the problem. Before the research team could publish its findings, however, 

Volkswagen filed a lawsuit to block the publication of the paper. 

What followed was more than two years of litigation as Volkswagen used the 

legal system to keep the vulnerability undisclosed. In 2013, a British high court imposed 

an injunction on the researchers to legally prohibit them from sharing their findings 

(O’Carroll, 2013). The University of Birmingham, at the time, responded to the 

injunction by saying they were “disappointed with the judgment which did not uphold the 

defense of academic freedom and public interest” (O’Carroll, 2013). Similarly, Radboud 

University responded that “the decision of the English judge imposes severe restrictions 

on the freedom of academic research in a field that is highly relevant to society (cyber 

security)” (as cited in O’Carroll, 2013). Despite the team’s research being of public 

importance, Volkswagen was unwilling to back down and face the financial burden 

associated with improving the security of its vehicles. 

Bound by the judge’s ruling, the research team was forced to withhold its findings 

and come to an understanding with Volkswagen before the injunction could be lifted. It 

was not until two years later, in 2015, that Volkswagen agreed to allow the team to 

publish a redacted version of their paper with certain, specific details of the attack 

removed. The paper, entitled “Dismantling Megamos Crypto: Wirelessly Lockpicking a 

Vehicle Immobilizer” (Verdult, Garcia, & Ege, 2015), was presented at the USENIX 

security conference in Washington, DC that year. 

6.2. The Digital Millennium Copyright Act (DMCA) 
Until recently, car hacking – even for the purposes of security research – was 

illegal in the United States. The Digital Millennium Copyright Act (DMCA), which was 

signed by President Clinton in 1998, generally prohibits modifying copyrighted software 

or bypassing access control technologies (U.S. Copyright Office, 1998). While the 

DMCA was originally intended to protect publishers of traditional computer applications, 

it nonetheless also legally extended to the systems found in modern automobiles. Section 

1201 of the DMCA effectively prohibits the reverse engineering of computer software for 

security research purposes, even if the researcher has purchased the software and owns 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 8 

the device on which the software runs (Greenberg, 2016). In fact, John Deere, the well-

known manufacturer of agricultural equipment, recently made a claim under the DMCA 

that farmers do not truly own their tractors, but rather receive “an implied license for the 

life of the vehicle to operate the vehicle” (as cited in Wiens, 2015). Similarly, General 

Motors commented to the U.S. Copyright Office that vehicle owners mistakenly 

“conflate ownership of a vehicle with ownership of the underlying computer software in 

a vehicle” (as cited in Wiens, 2015). The Digital Millennium Copyright Act has, 

therefore, long served as a deterrent to automotive security researchers. 

Thankfully, in October of 2015, the U.S. Copyright Office signed into law a new 

series of exemptions to the DMCA that allow “good-faith” security research “in a 

controlled environment designed to avoid any harm to individuals or to the public” (as 

cited in Greenberg, 2016). Due to a one-year delay in implementation, the DMCA 

exemptions did not legally take effect until October 2016. Now that “car hacking” for the 

purposes of security research is no longer prosecutable under copyright law, there is no 

longer a looming fear of lawsuits hanging over the security research community. It is 

important to note that the DMCA exemptions still do not permit modification of a 

vehicle’s telematics or infotainment systems, nor do they permit modifications that would 

violate any other laws such as emissions regulations (O’Kane, 2015). 

Predictably, auto manufacturers were opposed to the DMCA exemptions. Various 

organizations voiced objections to the Copyright Office, including the Association of 

Equipment Manufacturers, the Association of Global Automakers, the Auto Alliance, 

General Motors, and John Deere (O’Kane, 2015). The automakers claimed that 

unrestricted access to vehicles’ software could present "serious public health, safety and 

environmental concerns" (as cited in O’Kane, 2015). Security researchers have long 

recognized, however, that legislation such as the DMCA does not deter criminals or those 

with illegal or malicious intent. The DMCA, until recently, only served to stymie “good-

faith” security research that would have benefitted consumers and improved the security 

of the auto industry as a whole. 

roderick.h.currie@gmail.com	
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7. Safety First
Car hacking is inherently dangerous. When interacting with a vehicle’s CAN bus, 

it is important never to lose sight of the fact that the target system is a two-ton metal 

object capable of reaching dangerous speeds in a short amount of time. Unlike traditional 

computer “hacking” where a mistake could lead to corruption of the operating system or 

a Blue Screen of Death, a car hacking mistake could lead to serious injury or actual 

death. Therefore, it is important to practice car hacking in a safe and controlled manner. 

Because the CAN bus is where many of a vehicle’s critical control units can be 

found, there is a very real possibility of provoking an unintended response from the 

engine, brakes, transmission, or other components of the vehicle while experimenting 

with CAN messages. Even if the engine or transmission are not the intended target 

systems, it is important to plan for the worst. 

The best approach to safe car hacking is to raise the vehicle so that its driving 

wheels are no longer in contact with the ground, as seen in Figure 2. This will all but 

eliminate any concerns of unintended acceleration. This can be accomplished either by 

utilizing a vehicle lift, or by manually jacking up the vehicle and placing it on jack 

stands. It is important to become familiar with the target vehicle to know whether the 

vehicle sends power to the front wheels, rear wheels, or to all four. 

Figure 2: A Car Safely Raised Off the Ground (Twelfth Round Auto, 2017) 
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Hacking the CAN Bus 10 

It is also important to research – in advance – how the target vehicle can be shut 

off in the event of an emergency. Even with the car on jack stands, it is still important to 

have a shutdown plan to avoid damage from unintentionally over-revving the engine. For 

vehicles with older turn-key ignitions, turning the ignition to the “LOCK” or “ACC” 

position will shut off the car’s engine regardless of what gear the car is in. But for newer 

cars with push-button ignitions, the “STOP/START” button will generally not respond to 

a single press if the vehicle is not in neutral or park. On these vehicles, the emergency 

shutoff procedure can vary from two or three quick presses of the ignition button, to a 3-

second long hold of the button. Different makes and models of vehicles behave in 

different ways, but the owner’s manual is typically a good place to find information on 

vehicle-specific emergency shutoff procedures. 

8. Familiarization with the Target Vehicle
Just as it is essential to become familiar with the target vehicle for safety reasons, 

it is also wise to learn about the target vehicle’s underlying systems before attempting to 

hack them.  

As will be discussed later in this paper, the Controller Area Network (CAN) bus 

is a government-mandated standard found on almost all newer vehicles. However, to 

suggest that CAN bus hacking would yield the same results on all vehicles would be an 

oversimplification. The reality is that, beyond its mandatory diagnostic uses, CAN is 

implemented differently by each vehicle manufacturer. Some vehicles may utilize only 

one CAN bus, whereas others may have several, separate CAN buses. Many vehicles also 

feature other bus types, including LIN (Local Interconnect Network), FlexRay, MOST 

(Media Oriented Systems Transport), K-Line, SAE J1850, and more (Talbot & Ren, 

2008). In fact, stumbling across manufacturer-specific proprietary bus types is not 

uncommon. It is, therefore, necessary to perform some background research on the target 

vehicle to learn what bus types are present. 

Technical information such as bus types and bus locations can usually be found in 

third-party service manuals or automotive repair software resources such as ALLDATA 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 11 

(2017) or Mitchell1 (2017). While somewhat expensive, the data available from these 

resources can be extremely valuable to a vehicle security researcher.  

In the interest of simplicity and scope control, this paper and the car hacking 

project it describes will focus solely on the CAN bus. This paper describes a technique 

for utilizing CAN tools to record, replay, and reverse engineer CAN messages to 

manipulate a vehicle. The CAN message reverse engineering techniques described in this 

paper go beyond existing research on the topic. The same general concepts presented here 

can be applied to other bus types, but additional tools and interfaces may be required. 

9. About CAN
For a deeper exploration of the history and background of the Controller Area 

Network, please consult my previous GIAC Gold paper entitled Developments in Car 

Hacking (Currie, 2015). Nonetheless, this paper would be incomplete without at least a 

brief refresher of the CAN frame breakdown. Figure 3 below shows the structure of a 

standard CAN data frame: 

Figure 3: Complete CAN Frame (Wikipedia, 2014) 

For the purpose of the security testing being demonstrated in this paper, the main 

focus will be on the CAN arbitration ID (shown in green) and the CAN data (shown in 

red). The CAN arbitration ID is an 11-bit field that is used to identify different devices on 

the CAN bus and to prioritize messages. In order to craft CAN packets that the vehicle 

will process, it is first necessary to sniff out the valid CAN identifiers of devices on the 

bus. Later, those CAN identifiers can be reused to spoof legitimate devices. The other 

relevant field, the CAN data field, can be anywhere from 0 to 64 bits (8 bytes) in length. 

It is the CAN data field that tells the receiving device what function to perform. Gaining 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 12 

an understanding of the target vehicle’s message format again requires sniffing legitimate 

traffic to decipher the vehicle’s CAN message data. 

10. Connecting via OBD-II
The Onboard Diagnostic port, also known as the OBD-II port, represents the most 

direct interface to a vehicle’s CAN bus. Hacking a car via the OBD-II port has received 

criticism in the past because it is an unrealistic attack model. Certainly, there is a 

consensus among automotive security researchers that a real-world attacker is unlikely to 

have physical OBD-II access. However, there is also a consensus that the modern, 

connected car has a very broad attack surface and features a wide array of possible entry 

points. The remote exploitation of a vehicle is certainly more dramatic and tends to 

garner media attention. Nonetheless, performing research via direct, wired access to the 

OBD-II port is still a viable means of determining how a vehicle can be manipulated after 

access has been established, and should not be labeled as an unrealistic or incomplete 

model. Any manipulation of the CAN bus that can be performed via OBD-II can also be 

performed remotely against vehicles with remote CAN connectivity. 

10.1. OBD-II Background 
The California Air Resources Board (CARB) has long led the push for a self-

diagnostic system to be required on all motor vehicles to aid in emissions testing and 

monitoring. In 1991, CARB rolled out an Onboard Diagnostic (OBD) mandate for all 

new vehicles sold at the time. However, there was no standard for the data link port, 

protocol, or port location. By 1994, CARB standardized the current iteration of OBD, 

known as OBD-II, and mandated that it be included on all new cars sold in California. By 

1996, OBD-II was mandated nationwide in the United States (Lyons, 2015).  

Included in the OBD-II specification is a special type of data link connector with 

a standard pinout. The standard OBD-II pinout includes a direct link to the CAN bus. For 

an automotive security researcher, the OBD-II port is essentially an unprotected backdoor 

into a vehicle’s most sensitive embedded systems. While most backdoors are typically at 

least protected by a password, the OBD-II port is wide open to anyone with the 

appropriate hardware. 

roderick.h.currie@gmail.com	
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On most vehicles, the OBD-II port is usually found underneath the dashboard. 

The OBD-II standard requires the port to be located within three feet of the driver and to 

be accessible without the need for tools (B&B Electronics, 2011). Figure 4 shows where 

the OBD-II port can usually be found, and what it looks like: 

Figure 4: The OBD-II Port on a 2005 Nissan Titan (Nissanhelp, 2011) 

10.2. OBD-II Pinout 
To better understand how the OBD-II port grants unrestricted access to the CAN 

bus, it is worth delving deeper into the OBD-II standard connector pinout. It should also 

be noted that CAN became a mandatory part of the OBD-II standard on all 2008 and 

newer light vehicles. Some older vehicles may not utilize CAN, but may have other, 

similar bus types instead. Figure 5 shows a color-coded diagram of the OBD-II standard 

pinout and Figure 6 lists the standard assignments for each pin: 

Figure 5: The OBD-II Pinout 
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Pin Function Pin Function 
1 Manufacturer Specific 9 Manufacturer Specific 
2 J1850 Bus (+) 10 J1850 Bus (-) 
3 Manufacturer Specific 11 Manufacturer Specific 
4 Ground 12 Manufacturer Specific 
5 Ground 13 Manufacturer Specific 
6 CAN High 14 CAN Low 
7 K-Line (ISO 9141-2) 15 L-Line (ISO 9141-2)
8 Manufacturer Specific 16 12V Battery Power 

Figure 6: OBD-II Pin Assignments 

The OBD-II pinout diagram and table above highlight some of the important 

standard pins on the OBD-II connector. For the purposes of this paper, the J1850 bus 

(pins 2 and 10) and ISO 9141-2 bus (pins 7 and 15) are out of scope, but they are 

essentially diagnostic buses that operate in a similar manner to CAN. As noted in the 

table above, there are also various pins dedicated to manufacturer-specific bus types. 

Depending on the make and model of the vehicle being targeted, it may be necessary to 

delve into those other bus types to gain greater access to the vehicle’s internal systems. 

Other noteworthy pins are pins 4 and 5, which are dedicated ground pins, and pin 16, 

which provides a constant supply of 12-volt power from the vehicle’s battery. The 

purpose of pin 16 is to provide power to scan tools being plugged into the OBD-II port, 

so that they do not require an external power source. 

The most important pins within the scope of this paper, however, are pins 6 and 

14, which are dedicated to the Controller Area Network, or CAN bus. The terms “CAN 

High” (CAN_H) and “CAN Low” (CAN_L) are derived from the way in which CAN 

messages are physically transmitted. When the CAN bus is idle, both wires carry 2.5V of 

electricity. But when transmitting data, the CAN High wire increases to 3.75V and the 

CAN Low wire drops to 1.25V, creating a 2.5V voltage differential between the two 

wires (Nakade et al., 2015). It is this voltage differential on which CAN communication 

is based, and which makes the CAN bus so tolerant to electrical noise and interference. 

roderick.h.currie@gmail.com	
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Hacking the CAN Bus 15 

11. Car Hacking Hardware
Although the OBD-II port is an unsecured interface, car hacking via OBD-II is

not quite as simple as plugging a computer directly into the OBD-II port. There are 

OBD-II scanners, commonly used by mechanics, which can be plugged directly into the 

OBD-II port. However, the capability of these devices usually does not extend beyond 

reading and clearing diagnostic codes. 

In order to utilize a laptop computer to communicate on the CAN bus, some 

additional hardware peripherals are necessary. Figure 7 below shows the hardware that 

was selected to communicate with the target vehicle: 

Figure 7: The Basic Hardware Required to Hack the CAN Bus 

11.1. Human Interface 
Since car hacking via OBD-II requires a physical connection to the car, it is best 

carried out from inside the vehicle. Therefore, a laptop computer is necessary for sniffing 

and crafting packets. When selecting appropriate hardware, it is important to consider 

software compatibility. As will be discussed later in the paper, the chosen operating 

system for this car hacking project is Ubuntu 12.04. And so, it is critical to choose a 

laptop that can run this O/S in a stable manner without any hardware conflicts. 
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© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights. 

Hacking the CAN Bus 16 

The specific laptop ultimately selected was an older (circa 2011) Lenovo 

ThinkPad T420 (Lenovo, 2015). This laptop has an Intel Core i5-2520M 2.5GHz dual-

core processor, 4GB of RAM, and a 128GB solid-state drive. Most importantly, the 

ThinkPad T420 has been certified by Ubuntu as supporting the Ubuntu 12.04 LTS 32-bit 

operating system (Canonical, 2011). 

11.2. CAN to USB Interface 
There are numerous CAN to USB interface products available on the market. 

Some are considerably more expensive than others. Because the device will act as the 

laptop computer’s interface to the CAN bus, it is more complex than a simple adapter 

cable; it is an intelligent device that performs on-board processing of CAN packets. The 

interface of choice for this undertaking is CANtact, created by vehicle security researcher 

Eric Evenchick, and priced at $59.95 (Evenchick, 2015). CANtact was chosen for its 

affordability, cross-platform compatibility, and its open source nature. Throughout its 

development, Evenchick has kept the CANtact project entirely open source by making all 

of the design files, schematics, and code freely available online. Figure 8 shows a close-

up view of the CANtact CAN to USB interface device: 

Figure 8: The CANtact CAN to USB Interface Device (Evenchick, 2015) 

CANtact can best be thought of as a network interface card, allowing the laptop 

computer to join and participate on the Controller Area Network. The CANtact device is 

seen by the computer’s operating system as a CAN interface, and the computer is able to 

configure the settings of the interface as needed to communicate with the target vehicle. 
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Hacking the CAN Bus 17 

Once a link is established, the CANtact interface will pass CAN packets between the 

vehicle and the computer. CANtact draws its power from the computer via USB, so no 

external power source is required for the device. 

11.3. Additional Cables 
Getting the vehicle’s CAN messages from the OBD-II port to the CANtact device 

requires an OBD-II to DB9 serial cable (SparkFun, 2015). This is nothing more than a 

“dumb” cable that swaps the OBD-II output to a serial pinout that can be received by the 

CANtact hardware device (or other hardware interface). The SparkFun OBD-II to DB9 

cable puts the CAN High signal (OBD-II pin 6) onto DB9 pin 3, and the CAN Low signal 

(OBD-II pin 14) onto DB9 pin 5. 

Once the CAN messages from the vehicle have been processed by the CANtact 

device, they are output through a USB Type B port. This, therefore, requires a USB-B to 

USB-A cable (Amazon, 2015) to pass the USB data from the CANtact interface to the 

laptop computer. USB-B to USB-A cables are also commonly used to communicate with 

printers, scanners, and other peripheral devices. 

12. Software
With the appropriate hardware in place to bridge the gap between the laptop 

computer and the CAN-based systems of a modern automobile, it is also necessary to 

download and install the appropriate software to enable computer-to-vehicle 

communication. 

12.1. Ubuntu 12.04 
When selecting an operating system for a car hacking laptop, it is important to 

ensure that the O/S is fully compatible with the chosen computer system’s hardware. 

Particularly when dealing with a Linux O/S, it should not be assumed that just any 

distribution of Linux can be installed on any given laptop. If a laptop was originally 

shipped with a Windows O/S, it is not uncommon to experience hardware incompatibility 

when redeploying Linux on the system. Ubuntu 12.04 LTS 32-bit was chosen due to its 
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Hacking the CAN Bus 18 

certification for the laptop being used in this project, the Lenovo ThinkPad T420 

(Canonical, 2011). 

It is also worth noting that car hacking does not explicitly require a Linux 

operating system. Car hacking can be performed on Windows. There are GUI-driven 

Windows-based applications available, such as CANdo from Netronics (2015) or 

CanKing from Kvaser (2014). However, in general, the vehicle security research 

community has favored Linux and, therefore, many of the open-source tools and devices 

available are designed primarily for use with Linux. 

Another important reason to utilize Linux for car hacking is the Linux 

SocketCAN package. SocketCAN, which is explained in more detail below, is the Linux 

standard implementation of CAN protocols and drivers. SocketCAN has been part of the 

mainline Linux kernel since the release of Kernel 2.6.25 in April 2008 (Kernel.org, 

2016). Therefore, in order to utilize SocketCAN, it is imperative to choose an O/S that 

runs Kernel 2.6.25 or later.  

12.2. SocketCAN 
Since 2008, the SocketCAN package has allowed Linux to offer native support 

for CAN devices at the network layer. SocketCAN, originally known as the “Low Level 

CAN Framework” (Hartkopp & Thürmann, 2006) was developed by Volkswagen AG 

and contributed to the Linux kernel as an open source framework. Among the stated 

goals of the Low Level CAN Framework project were the enablement of easy access 

between Linux applications and the CAN communication layers, and the creation of a 

package that was modular in design to enable reuse on other projects (Hartkopp & 

Thürmann, 2006). SocketCAN was also designed to make CAN communication “as far 

as possible similar to the ordinary use of TCP/IP sockets” (Hartkopp & Thürmann, 2006). 

And this is precisely what makes SocketCAN so versatile. By utilizing the tried and true 

Berkeley sockets API, which originated in 1983 (Kernel.org, 2016), CAN sockets in 

Linux behave in the same way as traditional TCP/IP sockets. This greatly reduces the 

learning curve when communicating with CAN devices. The diagram below in Figure 9 

shows how SocketCAN fits into the Linux networking stack: 
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Hacking the CAN Bus 19 

Figure 9: SocketCAN Implementation in Linux (Wikipedia, 2009) 

SocketCAN consists of two main parts: a protocol family, known as PF_CAN, 

and a collection of networking drivers for various CAN devices (Kleine-Budde, 2012). 

The PF_CAN protocol family is similar to the familiar PF_INET protocol family used for 

Internet protocol communication in Linux. SocketCAN also adds a new Ethernet protocol 

type, ETH_P_CAN, that allows CAN packets to be routed through the traditional Linux 

network layer (Hartkopp & Thürmann, 2006). This allows CAN network device drivers 

to implement the same standardized network driver model as Ethernet devices (Kleine-

Budde, 2012).  

In addition to the CAN device drivers found in the SocketCAN package, 

SocketCAN also provides a collection of useful user-space applications and utilities, 

known as can-utils, that can be very helpful for car hacking. 

12.3. can-utils 
The SocketCAN package includes an array of useful tools, but there are several 

can-utils that are particularly useful when communicating with the CAN bus of a modern 

vehicle. 
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12.3.1. candump 

As its name implies, candump will dump all CAN packets directly to the console. 

When listing to an active vehicle’s CAN bus, the raw output of candump will likely be 

overwhelming and of little use. However, candump accepts various filters to increase the 

usefulness of the output. 

Usage: candump can0 

12.3.2. cansend 

Another utility with a relatively self-descriptive name, cansend allows a single 

packet to be sent out onto the CAN bus. When using cansend, it is necessary to specify 

the interface, the CAN identifier, and the CAN data. 

Usage: cansend can0 123#1122334455667788 

In the above usage example, a CAN frame will be sent with identifier 123 and 

data bytes 11, 22, 33, 44, 55, 66, 77, and 88 (Linklayer, 2016). The cansend utility 

assumes all values are hexadecimal. 

12.3.3. cansniffer 

Arguably the most useful of the can-utils when attempting to reverse engineer 

vehicle CAN bus messages, cansniffer works like candump but performs real-time 

filtering of the on-screen output. By filtering out any repetitive CAN messages containing 

data that remains unchanged, cansniffer displays only CAN messages for which the data 

is changing in real-time. This is particularly useful when performing CAN 

reconnaissance while physically operating the vehicle controls. For example, locking and 

unlocking the vehicle’s doors while running cansniffer should make it easy to zero in on 

which messages and which bytes specifically control the locking functionality. By 

filtering out most of the “noise,” cansniffer allows a security researcher to focus on only 

the relevant CAN packets.  

Usage: cansniffer can0 
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12.4. Wireshark with SocketCAN 
Wireshark also offers support for SocketCAN devices. Wireshark can be used to 

display real-time CAN bus output, similar to candump, and can filter CAN messages 

based on message ID. 

13. The Target Vehicle
This car hacking project will target the CAN bus of a 2011 Honda Civic LX 4-

door sedan as pictured below in Figure 10: 

Figure 10: 2011 Honda Civic LX Sedan 

While it is true that this car is already six years old at the time of writing this 

paper, the same techniques described herein can be applied to newer cars with similar 

results. Due to the federal OBD-II mandate, the vast majority of new vehicles feature a 

CAN bus architecture similar to that of the 2011 Honda Civic. 

As mentioned earlier, knowing the target vehicle is essential. For this project, a 

paid subscription to an online repair data service was utilized to obtain wiring diagrams 

and schematics for the target vehicle. It was discovered that the 2011 Honda Civic sedan 

utilizes two separate CAN bus backbones: Fast CAN (F-CAN) and Body CAN (B-CAN). 

The F-CAN bus deals with the more critical components of the car, such as the engine, 

transmission, steering, brakes, and other fundamental vehicle control functions. The 
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vehicle’s gauge cluster can also be found on the F-CAN bus, as it relies on data being 

sent from some of the most critical components of the vehicle in order to provide 

accurate readouts to the driver. The 2011 Civic’s F-CAN bus utilizes a pair of wires 

(CAN_H and CAN_L) and operates at 500Kbps. The B-CAN bus, on the other hand, 

utilizes only a single wire (SW-CAN) and operates at a much lower 33.33Kbps. The B-

CAN bus handles the less critical functions such as the vehicle’s radio, windows, door 

locks, comfort settings, and so on. 

Because of the higher criticality and sensitivity of the components found on F-

CAN, this car hacking project will focus on accessing the F-CAN bus to demonstrate just 

how vulnerable some of a modern vehicle’s critical components are to unauthorized 

access and manipulation. 

14. Limitations of CAN Hacking
When attempting to hack the CAN bus, there are numerous technical limitations 

that reduce the chances of success. This is particularly true of older vehicles where most 

vehicular functions are controlled via analog means. Ironically, it is the newer and more 

“advanced” cars that offer the most hacking potential, as they have greater 

interconnectivity between the various Electronic Control Units (ECUs) and a wider 

overall attack surface. 

Even once access to the CAN bus has been established, spoofing CAN messages 

may not always yield the desired results. Charlie Miller and Chris Valasek explained this 

dilemma in their 2014 paper, Adventures in Automotive Networks and Control Units 

(Miller & Valasek, 2014). One of the vehicles Miller and Valasek targeted was a 2010 

Ford Escape. The researchers found that although pressing the accelerator pedal created 

specific messages on the CAN bus, these messages when replayed over the bus did not 

result in acceleration of the vehicle. This is because many CAN messages are intended 

only to provide status information to other listening ECUs, but are not actually involved 

in the control of the vehicle. But as vehicles become increasingly interconnected, it is 

becoming more and more common that critical control functions such as steering, 

braking, and acceleration are accessible via the CAN bus. 
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Miller and Valasek also highlighted another problem with hacking the CAN bus, 

which is that “there can be a lack of response or complete disregard for packets sent if 

there is contention on the bus” (Miller & Valasek, 2014, p. 29). The CAN bus is already 

an inherently busy network, but adding spoofed packets to the mix can often lead to 

unexpected results. It is important to remember when sending fake CAN messages that 

“the original ECU will still be sending packets on the network as well, [which] may 

confuse the recipient ECU with conflicting data” (Miller & Valasek, 2014, p. 29). 

Therefore, when performing CAN bus hacking, it is important to be prepared for a 

sometimes unpredictable response from the target vehicle. 

15. Other Paths to the CAN Bus
Although many modern vehicles are designed without fundamental security

principles in place, not all vehicles lack network segmentation on the CAN bus. Some 

vehicles place the OBD-II diagnostic module on a separate CAN bus to the more critical 

vehicle control modules. Due to the limitations of the OBD-II port on some vehicles, it 

may be necessary to find an alternative entry point to the CAN bus. However, this proved 

not to be a significant obstacle on the target vehicle. As with most vehicles, the 2011 

Honda Civic has numerous locations where its F-CAN bus is readily accessible.  

15.1. Accessing F-CAN 
Some further examination of online repair diagrams revealed that one of the 

components on the Honda Civic’s F-CAN bus is the Tire Pressure Monitoring System 

(TPMS) control module. Because the gauge cluster is on the F-CAN bus, and because the 

TPMS control module needs to send data to the gauge cluster (e.g. a low tire warning), it 

apparently made sense to the vehicle’s designers to place the TPMS control module on 

the F-CAN. 

Luckily for hackers and vehicle security researchers, the TPMS control module is 

conveniently located just below the steering column and can be easily disconnected. By 

disconnecting the TPMS control module, it is possible to hardwire into the TPMS 

module’s CAN connector. Figure 11 below shows what this process looks like: 
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Figure 11: Hardwiring into the CAN Bus 

The main challenge with hardwiring into the TPMS module connector is knowing 

which PINS are used for the CAN signals. Through an examination of online repair data, 

it was determined that the TPMS module connector is a 20-pin connector with only 6 

active pins. More importantly, the CAN-H signal is found on pin 2 and the CAN-L signal 

is found on pin 11. Then, temporary wire was used to access pins 2 and 11 on the TPMS 

connector, and alligator clips were used to connect back to the CAN-H and CAN-L pins 

(6 and 14 respectively) of the OBD-II to DB9 serial cable. From there, the rest of the 

peripherals and methods remain the same as when connecting directly to the OBD-II port. 

15.2. Accessing B-CAN 
Some additional research yielded a particularly attractive access point to the less 

critical B-CAN bus, shown below in Figure 12: 

Figure 12: Option Connector Offering Physical Access to B-CAN 
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The highlighted area in Figure 12 shows what the vehicle’s repair literature 

describes as an “option connector” located in the fuse box under the dashboard. This so-

called option connector is where an optional feature such as fog lights or navigation 

would be plugged in. Because the vehicle does not come with the option in question, the 

connector is unused. However, an examination of wiring diagrams reveals that pin 5 of 

the option connector carries the B-CAN signal. Because B-CAN runs on a single wire, an 

alligator clip to pin 5 is all that is required for direct access to the B-CAN bus. 

16. CAN Bus Hacking Method
What follows is a reproducible method for configuring a standard laptop

computer to communicate with the CAN bus of a modern vehicle. These steps are based 

on a clean installation of Ubuntu 12.04 LTS on a compatible laptop computer. 

16.1. Install Dependencies 
There are various utilities that must be installed before installing can-utils. The 

first of those is Git. Git is a distributed version control system used to manage software 

projects. Git, itself, has some dependencies that must first be downloaded and installed as 

shown below: 

sudo apt-get install libcurl4-gnutls-dev libexpat1-dev 

gettext libz-dev libssl-dev build-essential 

Next, use wget to download the latest version of Git: 

wget https://www.kernel.org/pub/software/scm/git/git-

2.12.2.tar.gz 

Once downloaded, Git can be installed as follows: 

tar -zxf git-2.12.2.tar.gz 

cd git-2.12.2 

make prefix=/usr/local all 

sudo make prefix=/usr/local install 
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Before attempting to install can-utils, there are some other build dependencies that 

must be installed: 

sudo apt-get install autoconf automake pkg-config 

libgtk-3-dev autogen libtool 

16.2. Install can-utils 
With all the necessary dependencies in place, the SocketCAN utilities, also 

known as can-utils, can be downloaded and installed: 

git clone https://github.com/linux-can/can-utils.git 

cd can-utils 

./autogen.sh

./configure

make 

sudo make install 

16.3. Load Modules 
Each time the operating system boots, it is necessary to load the required CAN 

modules to interface with the CANtact device: 

sudo modprobe can 

sudo modprobe can_raw 

sudo modprobe slcan 

It is also possible to set the modules to load automatically each time the O/S 

boots. This is advisable to save time later on: 

sudo nano /etc/modules 

When editing the modules file, each module (can, can_raw, and slcan) should be 

added to the file with each on its own line. 
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16.4. Set CANtact Jumpers 
The CANtact interface device has a series of physical hardware jumpers that need 

to be set according to the type of connection being used. When utilizing an OBD-II to 

DB9 cable, the jumpers must be set to put CAN High on pin 3, CAN Low on pin 5, and 

the ground on pin 1. This jumper configuration is shown below in Figure 13: 

Figure 13: CANtact Jumper Placement for OBD-II to DB9 

16.5. Configure Interface 
With all of the necessary software tools in place, it is at this point that the 

CANtact device can be physically connected to the laptop’s USB port. When it is 

connected, CANtact will appear to the operating system as: 

/dev/ttyACM0 

The last digit may vary, depending on whether other USB devices are connected 

to the system. It is important to note the correct device name for the following step. 

Binding the USB to CAN interface is accomplished with the following command: 

slcand -o -s6 -t hw -S 3000000 /dev/ttyACM0 slcan0 

The above command utilizes slcand, part of the SocketCAN package, which is a 

serial CAN device daemon that enables serial to CAN communication. The -o option is 

used to open the device for communication. The -t hw option specifies a hardware serial 
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flow. The -S option is used to specify the serial bitrate, in this case 3,000,000 bits per 

second or 3Mbps. This can generally be left unchanged. The name of the new interface in 

this case is slcan0, or serial CAN device zero. And, finally, the -s6 option is used to 

specify the vehicle’s CAN bus bitrate. The -s6 option, specifically, signifies a CAN bus 

bitrate of 500Kbps. It is critically important that the correct CAN bus bitrate is selected 

for the target bus, otherwise the interface will be unable to communicate with the vehicle. 

The bitrate of the CAN bus will vary for different vehicles and different functional CAN 

buses. The CAN bus bitrate option should be chosen from the table below in Figure 14: 

Option Bitrate 

-s0 10Kbps 

-s1 20Kbps 

-s2 50Kbps 

-s3 100Kbps 

-s4 125Kbps 

-s5 250Kbps 

-s6 500Kbps 

-s7 800Kbps 

-s8 1Mbps 

Figure 14: Bitrate Options for slcand 

After binding the interface, it is also necessary to bring up the interface before it 

can be used. This is performed in the same manner as with an Ethernet interface: 

ifconfig slcan0 up 

With the link up, ifconfig should generate the following output as shown below in 

Figure 15. The new interface is now visible and its link state is reflected here. 
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Figure 15: Output from ifconfig Showing slcan0 Interface 

The process of binding the interface and bringing up the link can also be 

automated to save time in the future (Walter, 2015). This is done by creating a udev rule 

to call a custom script: 

sudo nano /etc/udev/rules.d/90-slcan.rules 

The script should be populated with the following code: 

ACTION=="add", ENV{ID_MODEL}=="CANtact_b20", 

ENV{SUBSYSTEM}=="tty", RUN+= 

"/usr/local/bin/slcan_add.sh $kernel" 

The above code is specific to the ID of the CANtact device. If using a different 

type of adapter, the ENV{ID_MODEL} will need to be changed accordingly. This code 

calls a script named slcan_add.sh, which must first be created as follows: 

sudo nano /usr/local/bin/slcan_add.sh 

The slcan_add.sh file should be populated with the following content: 

#!/bin/sh 

slcand -o -s6 -t hw -S 3000000 /dev/$1 slcan0 

sleep 2 

ifconfig slcan0 up 
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Now, whenever the CAN serial device is connected to the computer, the operating 

system will automatically bind the interface at the correct serial bitrate and CAN bitrate, 

and will automatically bring the link up. Once a connection to the vehicle has been 

established, the reconnaissance phase can begin. 

17. Performing CAN Reconnaissance
If all the prerequisite steps have been followed, the interface should be up and

ready to communicate at the correct bitrate for the target vehicle’s CAN bus. Now, the 

OBD-II end of the serial cable can be connected to the car’s OBD-II port. To wake the 

CAN bus and start seeing CAN traffic, it may be necessary to turn the vehicle’s ignition 

to the “ACC” or “ON” position, although it is not necessary to start the vehicle’s engine. 

A quick and easy test to see if CAN packets are being successfully received by 

the laptop computer is to run candump: 

candump slcan0 

At this point, a barrage of CAN messages should begin scrolling down the screen. 

Although the raw and unfiltered candump output is not very useful, it is nonetheless an 

effective way to confirm that the serial CAN interface is working correctly. An example 

of typical candump output is shown below in Figure 16: 
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Figure 16: Unfiltered candump Output 

Clearly, sending raw candump output to the screen is not a practical way to 

observe the CAN bus. A far more useful way to make the CAN output manageable is to 

run cansniffer as follows: 

cansniffer –c slcan0 

As discussed earlier, cansniffer performs real-time filtering of the CAN messages 

it receives. Any messages that remain unchanged will be filtered out, thereby making the 

output more readable. Cansniffer displays only messages that are changing, and even 

goes one step further by highlighting the changing bytes in color when using the -c 

option. An example of the output from cansniffer is shown below in Figure 17:  
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Figure 17: CAN Bus Output Filtered by cansniffer 

Another key advantage of cansniffer is that the output does not scroll. Each 

unique CAN ID is given its own line and remains fixed in that position. In the screenshot 

above, the specific bytes that are changing in real time are highlighted in red. By 

physically manipulating functions of the vehicle and observing the changing CAN bytes, 

it is possible to begin mapping out which message IDs and message data correspond to 

which specific vehicular functions. For example, shifting the gear lever from P (park) to 

R (reverse) causes a change in message ID 188. More specifically, byte 4 of message 188 

changes from a value of 01 to a value of 02. Recording and mapping out these specific 

pieces of data is crucial to gaining a better overall understanding of how CAN 

communication takes place within the target vehicle. 

17.1. Reconnaissance Findings 
After a considerable amount of time spent experimenting on the 2011 Honda 

Civic and recording how the CAN messages changed, a table of vehicular functions and 

their corresponding CAN messages was built. Communications were successfully 

deciphered relating to the engine RPM, vehicle speed, gas pedal position, gear selection, 
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cruise control, headlights, turn signals, wipers, and more. A complete list of the CAN 

functions that were documented is provided in Appendix A at the end of this paper. 

18. Replaying CAN Messages
With the CAN messages and their functions mapped out, the next logical step is

to try replaying the messages back to the vehicle to see how the vehicle will respond. It is 

possible to send a single CAN message out onto the CAN bus by using the cansend 

command. The following example shows a message intended to display an engine RPM 

of approximately 8,000 on the tachometer: 

cansend slcan0 1DC#023D1713 

A more efficient method for sending CAN messages to the vehicle is to utilize 

canplayer, another of the utilities found in the SocketCAN package. The canplayer utility 

takes a candump log file (.log) and replays it back to the vehicle with the same original 

timing as the recording. To utilize canplayer, it is first necessary to generate a candump 

log file: 

candump –l slcan0 

When candump outputs to a log file, its output is different than the output 

displayed earlier when running candump without the -l option. The generated log file is 

formatted in a way that canplayer can read and interpret. Another very useful feature of 

candump is the ability to log only messages with a certain CAN ID. This feature is 

utilized heavily later in this paper. For example, logging only messages relating to 

vehicle RPM data (message ID 1DC) can be accomplished in the following way: 

candump –l slcan0,1DC:7FF 

The 7FF in the command above tells candump to also record any extended CAN 

frames (EFF) and any remote transmission request (RTR) messages. This way, every 

message with the desired CAN ID of 1DC will be recorded in full. The resulting .log file 

can then be replayed back to the vehicle with canplayer by utilizing the following syntax: 

canplayer –I candump-2017-04-05-183520.log 
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When using canplayer to play back a candump log file, canplayer will 

automatically use the same CAN interface from which the candump file was recorded. 

The interface is defined in the log file. 

19. Customizing CAN Playback Files
Crafting customized CAN messages by hand is relatively easy. For example, the

cansend utility allows custom CAN messages to be manually typed into the console and 

sent out over the CAN bus. However, sending individual messages in this manner is 

unlikely to allow for much control over the vehicle. This is because when a CAN 

message is received and processed, its effects usually only last for 10 to 20 milliseconds 

before another CAN message is received and processed by the listening controller. 

Therefore, when attempting to control certain vehicular functions, a continuous stream of 

well-timed CAN messages is required. 

One way to continuously stream CAN messages to the vehicle is by utilizing a 

scripting language such as Python. With this method, a loop can be created to execute a 

cansend command at a specified interval, such as every 20ms. An alternative way to send 

a steady stream of CAN messages is to build a custom .log file to be played back to the 

vehicle using canplayer. The .log file must be in the following format: 

(1492287144.880000) slcan0 1DC#023D1713 
(1492287144.900000) slcan0 1DC#023D1713 
(1492287144.920000) slcan0 1DC#023D1713 
(1492287144.940000) slcan0 1DC#023D1713 
(1492287144.960000) slcan0 1DC#023D1713 
(1492287144.980000) slcan0 1DC#023D1713 
(1492287145.000000) slcan0 1DC#023D1713 

Figure 18: Excerpt From a CAN .log File 

The first column of the .log file represents the current date and time in what is 

known as “epoch time” (EpochConverter, 2017). This is the number of seconds that have 

elapsed since midnight GMT on January 1st, 1970. When working with .log files in 

canplayer, the time itself is not important; what is important is the time increment from 

one line to the next. When playing back a .log file, canplayer plays the first line 
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immediately and then waits the amount of the incremental time difference before playing 

the next line. In the example shown above in Figure 18, each line is played at an interval 

of 0.02 seconds, or 20 milliseconds. 

The second column of a CAN .log file represents the interface over which the 

CAN message should be sent. For the example in Figure 18, this is set to slcan0 and 

should not be modified. Finally, the third column of the .log file is the CAN message. 

The first three digits of the CAN message represent the message ID. The “#” symbol is 

necessary to separate the message ID from the message body. The characters that follow 

the “#” symbol represent the hexadecimal CAN message data. 

The message in the example in Figure 18 tells the tachometer to display a reading 

of 2,000 RPM. Because the message is repeated seven times at an interval of 20ms, its 

effect would be expected to last 140ms, or just a fraction of a second. Therefore, if a 

canplayer .log file is to have any significant impact on the target vehicle then it must 

usually be hundreds – or even thousands – of lines in length. 

 For the purposes of this research, one of the most efficient ways to create lengthy 

custom CAN .log files was to utilize Microsoft Excel and its built-in formula 

functionality. An example of the formula used to generate the timestamps in Figure 18 is 

shown below in Figure 19: 

Figure 19: Excel Formula for CAN Timestamps 

In the above example, the increment of 0.02 seconds could easily be changed to 

0.01 for 10ms, or 0.005 for 5ms, and so on. The correct formula only needs to be entered 

on a single line, then Excel’s built-in click-and-drag functionality allows the formula to 

be easily extended across hundreds or thousands of consecutive rows. This method of 
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.log file creation is less time-consuming than using a programming language to script the 

creation of CAN playback files. 

Once the timestamps are worked out, all that remains is to copy and paste the 

interface and message data across all rows of the file. In Excel, the playback file should 

be saved as a tab-delimited text file (.txt) and then renamed with a .log extension for 

playback by the canplayer utility. Knowing the specific message data to use for an 

intended task can be a process of trial and error, but observing and documenting patterns 

in known good data is an advisable starting point.  

20. Manipulation of the Target Vehicle
The ultimate goal of this project was not only to decipher and document CAN

message functions, but also to exert some degree of control over the target vehicle. As it 

turned out, this could be accomplished with relative ease. What follows is a breakdown of 

the different ways in which the vehicle was successfully manipulated. 

When sending CAN messages to the target vehicle, any physical access point on 

the appropriate CAN bus can be used. When communicating with this vehicle’s F-CAN, 

the results were the same regardless of whether connecting via the OBD-II port or 

tapping into the vehicle’s TPMS module connector. This only serves to highlight the lack 

of secure network segmentation found in today’s vehicles. 

In each case below, a reverse-engineered CAN log file (.log) was created and 

played back to the vehicle utilizing canplayer with the following syntax: 

canplayer –v –I filename.log 

When running canplayer, the -v option (verbose) displays each line of the .log file 

on the screen in real time, as it is being played back. The -I option is used to specify the 

filename of the input file. 

In each case, the CAN .log file can either be played back to the vehicle while the 

engine is running or while the engine is off (as long as the ignition is in the ON position). 

Regardless of whether the vehicle is parked or is in motion, it is still possible to take 

control of the CAN bus. 
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21. Manipulating Engine RPM Data
The target vehicle, a 2011 Honda Civic, features a traditional tachometer gauge

with a needle to represent engine RPM. Listening to CAN traffic and deciphering 

message functions revealed that the engine RPM data being displayed on the tachometer 

comes from CAN messages with an ID of 1DC. Under normal conditions, the engine’s 

Powertrain Control Module (PCM) broadcasts a 1DC message on the CAN bus every 20 

milliseconds, or 50 times per second. The gauge cluster’s control unit constantly listens 

on the CAN bus for messages with this identifier. Every time a message with an ID of 

1DC is received, the needle position on the tachometer is updated accordingly. 

The following is what a typical RPM CAN message looks like: 

1DC#0212B824 

On the target vehicle, and on many other Honda vehicles, the CAN message ID of 

1DC is used exclusively to broadcast engine RPM data on the CAN bus. In this case, the 

1DC message is 4 bytes in length. Throughout this research, it was found that the first 

byte never changed from a value of 02. The remaining three bytes, however, are a 

hexadecimal representation of the actual engine RPM after being encoded using a basic 

algorithm. After some experimentation, it was found that the following method depicted 

in Figure 20 can be used to derive the approximate human-readable engine RPM from 

the hexadecimal data: 

Divide
by 500

Convert 
to Decimal

Engine 
RPM

1DC Hex 
Data

(Last 3 Bytes)

Figure 20: Converting 1DC CAN Data to Human-Readable Engine RPM 

For example, a 1DC message with the last three bytes of 12B824 converts to a 

decimal value of 1,226,788. This number divided by 500 yields a result of 2453.576, or 

approximately 2,450 RPM. In testing, when a CAN message of 1DC#12B824 was played 

back to the vehicle continuously, the tachometer needle would consistently move to a 

position of approximately 2,450 RPM, thereby validating the above algorithm.

Reverse engineering CAN RPM messages can be accomplished by picking a 
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desired RPM and running it through the above algorithm in reverse. Interestingly, it was 

found that the vehicle would only process a CAN RPM message if the corresponding 

decimal value ended in either 03 or 53; all other messages were dropped without being 

processed. This is presumably a measure to promote fault-tolerance. The table shown 

below in Figure 21 lists CAN messages for RPM values ranging from 1,000 through 

8,000: 

1DC Message Last 3 Bytes Decimal Divide by 500 Approx. RPM
0207B1EF 07B1EF 504303 1008.606 1,000
020F3C03 0F3C03 998403 1996.806 2,000
021754DD 1754DD 1529053 3058.106 3,000
021EF503 1EF503 2028803 4057.606 4,000
022630F7 2630F7 2502903 5005.806 5,000
022E5331 2E5331 3035953 6071.906 6,000
0235DD45 35DD45 3530053 7060.106 7,000
023D1713 3D1713 4003603 8007.206 8,000

Figure 21: 1DC CAN Messages and Their Corresponding Engine RPM Values 

Using the values shown in the table above, a custom .log file was created which, 

when played back to the vehicle, yielded full control of the tachometer. The final RPM 

.log file created for this project contained 600 individual CAN messages and resulted in 

12 seconds of uninterrupted control of the tachometer. It is possible to create even longer 

files or to use a scripting language such as Python to establish indefinite control of CAN 

bus controllers. However, a 12-second demonstration is sufficient to show successful 

manipulation of the vehicle. 

A short excerpt from the CAN .log file is provided below in Figure 22, showing 

the overall technique of repeating 1DC RPM messages every 20 milliseconds and varying 

the data bytes to display different RPM values: 

(1492287146.060000)	 slcan0	 1DC#023D1713	
(1492287146.080000)	 slcan0	 1DC#023D1713	
(1492287146.100000)	 slcan0	 1DC#023D1713	
(1492287146.120000)	 slcan0	 1DC#023D1713	
(1492287146.140000)	 slcan0	 1DC#023D1713	
(1492287146.160000)	 slcan0	 1DC#023D1713	
(1492287146.180000)	 slcan0	 1DC#023D1713	
(1492287146.200000)	 slcan0	 1DC#023D1713	



© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights. 

Hacking the CAN Bus 39 

roderick.h.currie@gmail.com	

(1492287146.220000)	 slcan0	 1DC#022E5331	
(1492287146.240000)	 slcan0	 1DC#022E5331	
(1492287146.260000)	 slcan0	 1DC#022E5331	
(1492287146.280000)	 slcan0	 1DC#022E5331	
(1492287146.300000)	 slcan0	 1DC#022E5331	
(1492287146.320000)	 slcan0	 1DC#022E5331	
(1492287146.340000)	 slcan0	 1DC#022E5331	
(1492287146.360000)	 slcan0	 1DC#022E5331	
(1492287146.380000)	 slcan0	 1DC#022E5331	
(1492287146.400000)	 slcan0	 1DC#022E5331	

Figure 22: Excerpt From Tachometer Attack .log File 

Although it is not possible to capture the moving tachometer needle in a static 

image, the photograph provided below in Figure 23 shows the needle positioned at 8,000 

RPM – something that would be impossible under normal conditions due to the vehicle’s 

built-in rev-limiter: 

Figure 23: Successful Attack on Tachometer 

Additionally, a video of the tachometer attack from this project is available online 

at the following URL: https://www.youtube.com/watch?v=euRyJCgfRGo  

22. Manipulating Vehicle Speed Data
The technique used to manipulate the vehicle’s speedometer is similar to that used

to manipulate the tachometer. However, vehicle speed data uses a different CAN message 
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ID and a more complex message structure. Through a process of elimination, it was 

found that the message ID for speedometer data for the target vehicle is 158. A normal 

158 CAN message is shown below: 

158#03BE03D803C7022C 

Unlike the 1DC messages for RPM, which have a length of 4 bytes, a normal 158 

CAN message has a length of 8 bytes. Also, whereas 1DC RPM message are broadcast 

every 20ms, 158 messages are broadcast every 10ms, or 100 times per second. After a 

considerable amount of road testing and experimentation, it was determined that a 158 

CAN message can be divided into five distinct parts as follows: 

Bytes 1 & 2: Speed data for purposes other than speedometer. 
Bytes 3 & 4: Engine RPM data for purposes other than tachometer. 

Bytes 5 & 6: Speed data for display on speedometer. 
Byte 7: Signal to increment odometer. 

Byte 8: Signal to indicate vehicle is in motion. 

Much of the reverse engineering of CAN 158 messages was performed using 

Microsoft Excel and its built-in formula and graphing functions. An effective way to 

view and interpret a stream of 158 messages is to break them down into their different 

functional parts. Excel formulas allow the different segments of the message to be easily 

broken out and modified independently of each other. Figure 24 below shows a small 

excerpt from a 158 candump .log file after it has been dissected in Excel: 

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC
CAN	Message B1	&	B2 B1	&	B2 B3	&	B4 B3	&	B4 B5	&	B6 B5	&	B6 B7 B7 B8 B8

158#060C0633061A0236 060C 1548 0633 1587 061A 1562 02 2 36 54
158#06100636061D020E 0610 1552 0636 1590 061D 1565 02 2 0E 14
158#0614063906210211 0614 1556 0639 1593 0621 1569 02 2 11 17
158#061C063F062A0229 061C 1564 063F 1599 062A 1578 02 2 29 41
158#061F0644062D023C 061F 1567 0644 1604 062D 1581 02 2 3C 60
158#061E0647062C020E 061E 1566 0647 1607 062C 1580 02 2 0E 14
158#06220648062F0313 0622 1570 0648 1608 062F 1583 03 3 13 19
158#0628064E0636032E 0628 1576 064E 1614 0636 1590 03 3 2E 46
158#062C065206390331 062C 1580 0652 1618 0639 1593 03 3 31 49
158#062C0653063A0302 062C 1580 0653 1619 063A 1594 03 3 02 2

Figure 24: Breaking Down the 158 Message Structure 
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An even better way to fully understand and analyze just what the 158 CAN 

message does is to visually depict its various byte pairs using a line graph as shown 

below in Figure 25. This allows for pattern analysis, which is an essential method for 

learning how the target vehicle communicates. 

Figure 25: Charting the Different Parts of a CAN 158 Message 

The line graph above in Figure 25 was created using an approximately 7-second 

excerpt of CAN messages with ID 158 recorded from a longer session of normal driving 

behavior. The “epoch” timestamps have been removed for simplicity and replaced with a 

timestamp showing the number of seconds that have elapsed since the recording began. 

The graph immediately offers up evidence regarding what is happening within the 

different byte pair segments of a CAN 158 message. As indicated by the blue and yellow 

lines, byte pairs 1 & 2 and 5 & 6 both report the speed of the vehicle and mirror each 

other very closely. The green line of bytes 3 & 4 represents engine RPM data that is not 

used by the tachometer and is entirely separate from the 1DC RPM messages discussed 

earlier in the paper. As the graph above shows, the amount of work being performed by 

the engine was directly commensurate with the vehicle’s speed until shortly after the 23-

second mark. The green line’s sharp drop-off represents a gear change; the engine RPM 
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decreased significantly, but then continued to climb again as the car accelerated. The 

engine RPM and vehicle speed lines then continued to roughly parallel each other 

throughout the experiment when driving on a level surface.  

Bytes 7 of a 158 CAN message is used exclusively by the odometer and will be 

covered in greater detail later. Byte 8, however, has some relevance to vehicle speed data 

and is worth explaining at this time. The data being transmitted in byte 8 may initially 

seem quite perplexing. While speedometer data is clearly contained in bytes 5 & 6, it is 

not possible to manipulate the speedometer without byte 8 also being present. Similarly, 

although it was determined that byte 7 is used for the odometer signal, the odometer will 

not update unless byte 8 also contains data. Analysis of 158 CAN packets during normal 

driving reveals that the byte 8 data has no direct correlation to the vehicle’s speed or 

engine RPM. The byte 8 data appears to fluctuate regardless of how the vehicle is being 

driven, so reaching a logical conclusion about the purpose of byte 8 was not easy. 

It can be concluded that the true purpose of byte 8 is essentially to let the 

vehicle’s ECUs know that the vehicle is in motion. Rather than containing direct 

numerical data, the messages contained in CAN 158 byte 8 are actually more of a “pulse” 

type signal. And this pulse signal varies depending on the state of the vehicle. This is best 

illustrated in the graphs below in Figure 26: 

Figure 26: 158 Byte 8 “Pulse” Signal: Stationary (L) vs. Moving (R) 

The two graphs above represent two separate samplings of byte 8 data each 

created from 30 consecutive CAN 158 messages. The left set of data was recorded when 

the vehicle was parked, whereas the right data set was recorded while the vehicle was 

being driven.  
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As can be seen from the left graph, the 158 byte 8 signal is uniform when the 

vehicle is not in motion. The signal repeatedly peaks at a decimal value of 61, before 

dropping down to a value of 0. This occurs consistently regardless of whether the engine 

is running or not, and regardless of whether the vehicle is in gear. When the vehicle is 

being driven, however, the byte 8 signal immediately becomes a lot more erratic. More 

crucially, the signal never reaches the high value of 61 or the low value of 0 associated 

with the stationary signal. It is this slightly narrower signal range that tells the vehicle it 

is in motion, thereby prompting the gauge cluster to process speedometer messages 

(bytes 5 & 6) and odometer messages (byte 7). When the byte 8 signal tells the car it is 

stationary or if the byte 8 signal simply is not present, then bytes 5, 6 and 7 are all 

ignored by the listening ECUs. 

Focusing in on the speed data of bytes 5 & 6, after some experimentation, the 

algorithm shown below in Figure 27 was established for deriving the vehicle speed in 

miles per hour (mph) from the original CAN hexadecimal values: 

Divide
by 100

Convert 
to Decimal

Vehicle 
Speed 
(mph)

158 Hex Data
(Bytes 5 & 6)

Multiply by
0.62137119

Figure 27: Converting 158 CAN Data to Vehicle Speed in Miles per Hour 

On the target vehicle, and on most vehicles, the ECUs process vehicle speed data 

in kilometers per hour (km/h). The fact that the gauge cluster displays speed in miles per 

hour (mph) is merely a display setting. Therefore, it is necessary to multiply the decimal 

km/h data by 0.62137119, as 1 kilometer is equal to 0.62137119 miles. It is also 

necessary to divide the resulting value by 100 to position the decimal point correctly. 

For example, a hexadecimal speed value of 2659 can be converted to 9817 in 

decimal. When 9817 is multiplied by 0.62137119, the result is 6100.00097223. When 

this number is divided by 100, the result is 61.0000097223, or a speed of 61 mph. The 

table below in Figure 28 lists the CAN 158 byte 5 & 6 data associated with various other 

vehicle speeds: 
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158 Bytes 5 & 6 Decimal Multiply by 0.62137119 Divide by 100 Approx. Speed
064A 1610 1000.40761590 10.00407616 10mph
12DD 4829 3000.60147651 30.00601477 30mph
1F6F 8047 5000.17396593 50.00173966 50mph
324B 12875 8000.15407125 80.00154071 80mph
4B71 19313 12000.54179247 120.00541792 120mph
6E04 28164 17500.29819516 175.00298195 175mph
7DBB 32187 20000.07449253 200.00074493 200mph

Figure 28: 158 CAN Messages and Their Corresponding Vehicle Speed Values 

The method used to demonstrate continuous manipulation of the vehicle’s 

speedometer was similar to that used earlier for the tachometer. A custom .log file was 

created and canplayer was used to play it back to the vehicle, overriding the vehicle’s true 

speed data and replacing it with spoofed data. This attack proved possible regardless of 

whether the vehicle was in motion or not. The same attack could also be accomplished 

programmatically, by running a custom script against the vehicle rather than using a 

saved CAN .log file. It is not practical or realistic, however, to manipulate the 

speedometer in real time using keystrokes alone. This is because spoofed speed messages 

must be sent repeatedly at intervals of 10 milliseconds, otherwise the speedometer will 

default back to displaying the true speed being reported by the vehicle’s PCM. 

It was found that the target vehicle’s speedometer readout could be manipulated 

for up to several minutes at a time. The simplest form of speedometer attack would be to 

simply craft one CAN 158 message for the desired speed and send that same message to 

the vehicle repeatedly at 10-millisecond intervals. However, the requisite “pulse” signal 

of the 158 message byte 8 adds an element of complexity. In order for the Gauge Control 

Module (GCM) to process and display the spoofed speed message, it first has to be 

convinced that the vehicle is actually moving. This was accomplished by copying the 

legitimate byte 8 signal recorded during an actual driving session, overlaid with the 

spoofed speed data of bytes 5 & 6. An excerpt from the final speedometer manipulation 

.log file is shown below in Figure 29: 

(1492993910.700000)	 slcan0	 158#0000000076300031	
(1492993910.710000)	 slcan0	 158#0000000076300009	
(1492993910.720000)	 slcan0	 158#000000007630001B	
(1492993910.730000)	 slcan0	 158#0000000076300020	
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(1492993910.740000)	 slcan0	 158#000000007630003C	
(1492993910.750000)	 slcan0	 158#000000007630000F	
(1492993910.760000)	 slcan0	 158#000000007630001E	
(1492993910.770000)	 slcan0	 158#000000007630002B	
(1492993910.780000)	 slcan0	 158#0000000076300032	
(1492993910.790000)	 slcan0	 158#0000000076300005	
(1492993910.800000)	 slcan0	 158#0000000076300016	
(1492993910.810000)	 slcan0	 158#0000000076300023	
(1492993910.820000)	 slcan0	 158#0000000076300038	

Figure 29: Excerpt from Speedometer Attack .log File 

In the .log file excerpt shown above, bytes 1 through 4 have been set to zero 

because they are not required for manipulation of the speedometer. Bytes 5 & 6 contain 

the hexadecimal value 7630, which equates to a speed of 188 mph. Byte 7 has also been 

set to zero as it is not required for this exercise. Finally, the changing data in the byte 8 

position represents the in-motion “pulse” signal.  

The photograph shown below in Figure 30 shows an uncommon sight – a reading 

of 188 mph being displayed on the speedometer while the vehicle itself is stationary. This 

represents a successful attack against the target vehicle’s speedometer. This also points to 

a worrisome lack of checks and balances on the CAN bus, allowing a would-be attacker 

to create a condition which falls outside of “normal” operating parameters without any 

intervention from the vehicle. 

Figure 30: Successful Attack on Speedometer 
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A video of the speedometer attack from this project is also available online at the 

following URL: https://www.youtube.com/watch?v=QlpTx_LsW7M  

23. Manipulating Odometer Data
The odometer displays the number of miles a vehicle has traveled in its lifetime. It

should be noted that modifying a vehicle’s odometer is illegal in the United States under 

Title 49, U.S. Code Chapter 327, which prohibits the “disconnection, resetting, or 

alteration of a motor vehicle's odometer with intent to change the number of miles 

indicated thereon” (NHTSA, 2017). Nonetheless, in the interest of security research, what 

follows is a method for manipulating the odometer through reverse engineering of CAN 

bus messages. 

The way in which the odometer value is managed by the vehicle varies from one 

manufacturer to the next. On some vehicles, the actual odometer value in miles or 

kilometers is broadcast constantly on the CAN bus. Vehicles using this method are most 

susceptible to real-time odometer spoofing. However, the 2011 Honda Civic actually 

stores the odometer value within the gauge cluster itself. This is evidenced by cases in 

which the gauge cluster is replaced and an entirely different odometer reading is inherited 

by the vehicle. Therefore, on the 2011 Honda Civic, the odometer value in miles or 

kilometers is not transmitted over the CAN bus. Instead, the PCM transmits a periodic 

CAN signal to the Gauge Control Module to increment the odometer. The frequency of 

the “increment” command depends upon the traveling speed of the vehicle. The GCM 

listens for this signal and increments the odometer each time an “increment” command is 

received. This means it is still possible for an attacker to manipulate the odometer to 

some degree through reverse engineering of CAN messages. 

As noted earlier, the odometer signal can be found in CAN message ID 158, the 

same message type responsible for speed and other engine data: 

158#03BE03D803C7022C 

More specifically, byte 7 is used for the signal to tell the odometer to periodically 

increment depending upon how fast the vehicle is traveling. When the vehicle is first 

turned on, CAN message 158 will have a value of 00 in the byte 7 position. As the 
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vehicle begins to move, byte 7 will change to 01, then to 02, and so on. Each time the 

Gauge Control Module sees an increment of the byte 7 value, it, in turn, increments the 

stored odometer value. The actual numeric value of byte 7 is insignificant – it is only the 

timing of the increments that the Gauge Control Module cares about. Also, the fact that 

one byte of data can only cycle through 256 possible values is of little consequence; 

when byte 7 reaches a decimal value of 255, its next increment returns it to a value of 

zero and the incrementation cycle continues. The graph shown below in Figure 31 

overlays the byte 7 odometer signal on top of vehicle speed data from bytes 5 & 6: 

Figure 31: Relationship of Vehicle Speed and Odometer Incrementation 

The graph above was created using data recorded while accelerating the vehicle 

from a stop to a speed of approximately 60 mph. What is immediately apparent from the 

graph is that as the traveling speed of the vehicle increases, so too does the frequency of 

odometer incrementation. When the vehicle is traveling at a low speed, the “steps” of the 

odometer line appear more spread out. As the vehicle travels faster, the time between 

each odometer increment lessens. 

It became apparent that the key to manipulating the odometer is to duplicate the 

odometer incrementation signal. And, in theory, doing so with a minimal length of time 

between increments should cause the odometer readout to increase more rapidly. Using 

lessons learned in the speedometer manipulation exercise, it was also found that the byte 

8 vehicle-in-motion “pulse” signal had to be present to get any kind of response from the 

odometer.  
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As with the tachometer and speedometer hacks, the easiest way to manipulate the 

vehicle’s odometer is to play back a custom .log file using canplayer. This is because the 

Gauge Control Module expects to receive a CAN 158 message from the Powertrain 

Control Module once every 10 milliseconds, without fail. An excerpt from the .log file 

used to manipulate the odometer is shown below in Figure 32: 

(1492993910.840000)	 slcan0	 158#0000000000003508	
(1492993910.850000)	 slcan0	 158#000000000000351E	
(1492993910.860000)	 slcan0	 158#000000000000352C	
(1492993910.870000)	 slcan0	 158#000000000000353C	
(1492993910.880000)	 slcan0	 158#0000000000003506	
(1492993910.890000)	 slcan0	 158#0000000000003511	
(1492993910.900000)	 slcan0	 158#0000000000003624	
(1492993910.910000)	 slcan0	 158#0000000000003636	
(1492993910.920000)	 slcan0	 158#000000000000360D	
(1492993910.930000)	 slcan0	 158#0000000000003614	
(1492993910.940000)	 slcan0	 158#0000000000003627	
(1492993910.950000)	 slcan0	 158#000000000000363B	
(1492993910.960000)	 slcan0	 158#0000000000003601	
(1492993910.970000)	 slcan0	 158#0000000000003615	
(1492993910.980000)	 slcan0	 158#000000000000372B	
(1492993910.990000)	 slcan0	 158#000000000000373B	

Figure 32: Excerpt from Odometer Attack .log File 

As can be seen from the excerpt above, only bytes 7 and 8 of the 158 message are 

needed to increase the vehicle’s odometer value. Byte 8, highlighted in purple, is the 

“pulse” signal tricking the vehicle into thinking it is in motion. Byte 7, highlighted in red, 

is the byte that actually increments the odometer. In order to achieve a rapid 

incrementation of the odometer, it was determined that the optimal span between each 

increment of the byte 7 value was 8 messages, or a time interval of 80ms. When the byte 

7 value was incremented more frequently than once every 80ms, some of the increment 

requests were actually ignored and the odometer readout would increment at a much 

slower rate. 

When the above .log file was played back to the vehicle continuously for a period 

of 2 minutes, the odometer increased by a total of 5.7 miles. Under normal circumstances, 
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such a rapid rate of odometer increase would require the vehicle to be traveling at a speed 

of approximately 171 miles per hour. 

Modification of the odometer is not something that can be captured in a 

photograph. However, a video of the odometer attack from this project is available online 

at the following URL: https://www.youtube.com/watch?v=YhKfDh1-KP4  

24. Implications
The specific attacks demonstrated in this paper may seem insignificant, as they do

not directly impact the safety or control of the vehicle. However, the intent of this project 

was to demonstrate the relative ease with which an unauthorized device can join the CAN 

bus and manipulate the vehicle. Controlling the data being displayed on the vehicle’s 

gauge cluster is an effective way to demonstrate manipulation of the CAN bus, as it 

provides a clear, visual indicator of a successful attack. This is similar to the way a 

hacker might breach a web server and deface a website as evidence of their exploits. 

What is particularly alarming about this research is that the same network bus that 

was exploited to manipulate the gauge cluster also hosts communications for the engine, 

transmission, brakes, and steering. On a newer, more connected vehicle with a greater 

amount of computerization, the same techniques demonstrated in this paper could be used 

to take full control of the vehicle and create a dangerous, potentially deadly situation. 

25. Conclusion
By successfully demonstrating multiple ways in which the CAN bus can be 

manipulated using basic computer hardware, this project has highlighted just how 

woefully insecure the CAN architecture is. Unfortunately, without a revision of the 

federal law mandating the OBD-II standard, the outdated CAN bus is not going away 

anytime soon. The Controller Area Network will remain at the core of modern vehicles 

for years to come. 

Today, with the auto industry on the cusp of fully-autonomous vehicle technology 

and greater interconnectivity than ever before, auto manufacturers simply cannot ignore 

the inherent vulnerabilities of the CAN bus. The problem of securing automotive systems 
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is massively complex, but the responsibility lies with the automakers to face the 

challenge head-on and take proactive steps to secure their products. In the meantime, the 

best way to provoke the automakers to action is to increase public awareness of the 

underlying problem so that it can no longer be ignored. It is my hope, therefore, that the 

research presented in this paper will inspire other security researchers to undertake car 

hacking projects of their own for the betterment of the automobile industry overall. 
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Appendix A 
List of CAN Messages and Functions for 2011 Honda Civic LX 

CAN 
ID 

Byte 
1 

Byte 
2 

Byte 
3 

Byte 
4 

Byte 
5 

Byte 
6 

Byte 
7 

Byte 
8 Vehicle Function 

13A XX - - - - - - - Engine	Idle	Compensation	
13A - XX - - - - - - Gas	Pedal	Position	
158 XX XX - - - - - - Speed	Data,	Not	for	Speedometer	
158 - - XX XX - - - - Engine	RPM,	Not	for	Tachometer	
158 - - - - XX XX - - Speed	Data	for	Speedometer	
158 - - - - - - XX - Odometer	Incrementation	
158 - - - - - - - XX Vehicle	in	Motion	
164 00 - - - - - - - Headlights:	Off	
164 04 - - - - - - - Headlights:	DRLs	
164 05 - - - - - - - Headlights:	Parking	Lights	
164 06 - - - - - - - Headlights:	Low	Beams	
164 07 - - - - - - - Headlights:	High	Beams	
164 - - 00 - - - - - A/C:	Off	(Engine	Running)	
164 - - 40 - - - - - A/C:	On	(Engine	Running)	
164 - - 80 - - - - - A/C:	Off	(Engine	Off)	
164 - - C0 - - - - - A/C:	On	(Engine	Off)	
17C - - XX XX - - - - Engine	RPM,	Not	for	Tachometer	
17C - - - - XX - XX - Brake	Pedal	Depressed	
1DC 02 XX XX XX Engine	RPM	for	Tachometer	
188 - - - 01 - - Current	Gear:	Park	
188 - - - 02 - - Current	Gear:	Reverse	
188 - - - 04 - - Current	Gear:	Neutral	
188 - - - 08 - - Current	Gear:	Drive	
188 - - - 20 - - Current	Gear:	3rd	
188 - - - 40 - - Current	Gear:	2nd	
188 - - - 80 - - Current	Gear:	1st	
164 0X - - - - - - - Cruise	Control:	Off	
164 2X - - - - - - - Cruise	Control:	On	
164 AX - - - - - - - Cruise	Control:	Accelerate	
164 6X - - - - - - - Cruise	Control:	Decelerate	
164 EX - - - - - - - Cruise	Control:	Cancel	
164 X4 - - - - - - - Handbrake:	On	
164 X0 - - - - - - - Handbrake:	Off	
294 04 - - - - - - - Turn	Signals:	Off	
294 24 - - - - - - - Turn	Signals:	Left	
294 44 - - - - - - - Turn	Signals:	Right	
294 04 - - - - - - - Wipers:	Off	
294 0C - - - - - - - Wipers:	Intermittent	
294 14 - - - - - - - Wipers:	Low	
294 1C - - - - - - - Wipers:	High	
305 80 - Driver’s	Seatbelt:	Unfastened	
305 00 - Driver’s	Seatbelt:	Fastened	
324 XX XX XX XX XX XX XX XX Engine	Run	Time	Clock	
40C XX XX XX XX XX XX XX XX Vehicle	Identification	Number	(VIN)	
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